المادة: الرياضيات

Lecture (6)

المحاضر : م.م رياض حامد

(Continuous Functions) : (الدوال المستّمرةٌ

The Continuity Test:

The function $\mathbf{y}=\mathbf{f}(\mathbf{x})$ is continuous at $\mathbf{x}=\mathbf{c}$ if and only if the following statements are true:

1- f (c) exists
2- $\lim _{\mathrm{m}_{x \rightarrow C}} \mathbb{f}(\mathbb{X})$ exists
3- $f(c)=\lim _{x \rightarrow c} f(\mathbb{X})$
Example: did the function $f(x)=8-x^{3}-2 x^{2}$ is continuous at the $x=2$?

Sol:

$$
f(2)=8-2^{3}-2 *(2)^{2}=8
$$

$\lim _{x \rightarrow 2}\left[8-x^{3}-2 x^{2}\right]=8-2^{3}-2 *(2)^{2}=8$
$f(2)=\lim _{x \rightarrow 2} f(x)$.
So the function is continuous at $x=2$.

Example: did the function $\boldsymbol{f}(\boldsymbol{x})=\frac{\left(x^{2}-4\right)}{x-2}$ is continuous at the $x=\mathbf{2}$?
Sol:
$\mathbf{f}(\mathbf{2})=\frac{\left(2^{2}-4\right)}{2-2}=\frac{0}{0}$ not exists
So the function is not continuous at $x=2$.

H.W:

1- did the function $f(x)=\frac{\left(x^{2}-9\right)}{x-3}$ is continuous at the $\mathrm{x}=3$?
2- Find the limit of the function $f(x)=\frac{\left(x^{2}-1\right)}{x-\sqrt{1}}$ is continuous at the $x=\sqrt{1}$?

