هندسة تقنيات الحاسبات/مرحلة اولى

Real Numbers

Intervals:

The interval is a subset of real numbers $\boldsymbol{\mathfrak{R}}$ and contains three types

• open interval (a,b)

- closed interval [a,b]
- half closed and half open (a,b], [a,b)

(a, b) =	$\{x \mid a < x < b\}$	Open
[a, b] =	$\{x a \le x \le b\}$	Closed
[a, b) =	$\{x a \le x < b\}$	Half-open
(a, b] =	$\{x a < x \le b\}$	Half-open
$(a,\infty) =$	$\{x x > a\}$	Open
$[a,\infty) =$	$\{x x \ge a\}$	Closed
$(-\infty, b) =$	$\{x x < b\}$	Open
$(-\infty, b] =$	$\{x x \le b\}$	Closed
$(-\infty,\infty)$	= ℛ (set of all real numbers)	Both open

Real functions

Function: a relationship between the two groups so that each element of the domain group is linked to only a single element of a group

The opposite field and write y = f(x)

Domain group values (the possible values for x) Domain for x .

Range : which is a subset of the domain group contrast (the possible values for y with respect to values for x)

Example:

Function	Domain (x)	Range (y)
$y = x^2$	$(-\infty,\infty)$	[0, ∞)
y = 1/x	$(-\infty, 0) \cup (0, \infty)$	$(-\infty, 0) \cup (0, \infty)$
$y = \sqrt{x}$	$[0,\infty)$	[0, ∞)
$y = \sqrt{4 - x}$	$(-\infty, 4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]

Solution: The formula $y = x^2$ gives a real y-value for any real number x, so the domainis $(-\infty,\infty)$. The range of $y = x^2$ is $[0,\infty)$ because the square of any real number isnonnegative and every nonnegative number y is the square of its own square root, $y = (\sqrt{y})^2$ for $y \ge 0$.

The formula y = 1/x gives a real y-value for every x except x = 0We cannot divide any number by zero. The range of y = 1/x the set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since y = 1/(1/y).

The formula $y = \sqrt{x}$ gives a real y-value only if $x \ge 0$. The range of $y = \sqrt{x}$ is $[0,\infty)$ because every nonnegative number is some number's square root (namely, it is the square root of its own square).

In $y = \sqrt{4-x}$ the quantity 4 -*x* cannot be negative. That is, $4 - x \ge 0$, or $x \le 4$

The formula gives real *y*-values for all $x \le 4$ The range of is $[0,\infty)$,

the set of all nonnegative numbers.

The final formula gives a real y-value for every x in the closed interval From -1 to 1. Outside this domain, $1 - x^2$ is negative and its square root is not a real number. The values of $1 - x^2$ vary from 0 to 1 on the given domain, and the square roots of these values do the same. The range of $\sqrt{1 - x^2}$ is [0, 1].

هندسة تقنيات الحاسبات/مرحلة اولى

Limits

We say the real number *L* is the limit of the function *f* when $x \to x_0$ as written $\lim_{x \to x_0} f(x) = L.$

Note that the limit Spread over inside the parentheses of summation or subtract, multiply, divide for two functions .

Example: Evaluate the limit

$$1.\lim_{x \to 1} \frac{2x^4 - 6x^3 + x^2 + 3}{x - 1}$$

$$= \lim_{x \to 1} 2x^3 - 4x^2 - 3x - 3 = -8$$

$$2.\lim_{x \to 0} \frac{\sqrt{4 + x} - 2}{x} \times \frac{\sqrt{4 + x} + 2}{\sqrt{4 + x} + 2} = \lim_{x \to 0} \frac{4 + x - 4}{x\sqrt{4 + x} + 2x} = \lim_{x \to 0} \frac{x}{x\sqrt{4 + x} + 2} = \lim_{x \to 0} \frac{2x^3 - 4x^2 - 3x - 3}{2x^4 - 6x^3 + x^2 + 3}$$

$$= \frac{2x^3 - 4x^2 - 3x - 3}{x^4 - 6x^3 + x^2 + 3}$$

$$= \frac{2x^3 - 4x^2 - 3x - 3}{x^4 - 6x^3 + x^2 + 3}$$

$$= \frac{2x^3 - 4x^2 - 3x - 3}{x^4 + 2x^2}$$

$$= -4x^3 + x^2 + 3$$

$$= \frac{4x^3 + x^2 + 3}{-3x^2 + 3}$$

$$= \frac{1}{4}$$

Exercises: Evaluate the limits H.W

•
$$\lim_{x \to 2} \frac{x^4 - 16}{x - 2}$$

•
$$\lim_{x \to 1} \frac{x^3 - x^2 - 5x - 2}{(x + 1)^2}$$

•
$$\lim_{x \to 0} \frac{\sqrt[3]{1 + x} - 1}{x}$$

Continuity

Continuity Test

A function f(x) is continuous at x = c if and only if it meets the following three

conditions.

1. f(c) exists (c lies in the domain of f)

2. $\lim_{x \to c} f(x)$ exists (*f* has a limit as $x \to c$)

3. $\lim_{x\to c} f(x) = f(c)$ (the limit equals the function value)

Example:A Continuous Extension

Show that $f(x) = \frac{x^2 + x - 6}{x^2 - 4}$ has a continuous extension to x = 2 and find that extension. **Solution:** Although f(2) is not defined, if $x \neq 2$ we have $f(x) = \frac{x^2 + x - 6}{x^2 - 4} = \frac{(x - 2)(x + 3)}{(x - 2)(x + 2)} = \frac{x + 3}{x + 2}$ The new function $F(x) = \frac{x+3}{2}$ $\overline{x+2}$ is equal to f(x) for $x \neq 2$ but is continuous at x = 2having there the value of 5/4. Thus *F* is the continuous of extension f to x = 2 and $\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4} = \lim_{x \to 2} f(x) = \frac{5}{4}.$

Derivative

The derivative of function f(x) with respect to x is f'(x) as define

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
.
Rules of derivatives :
Let $f(x)$ and $g(x)$ are differentiable functions and let *c* is a constant,
 $n \in \Re$, then
 $\cdot \frac{d}{c} = 0$

•
$$t = 0$$

 dx
• $\frac{d}{dx} [f(x) \pm g(x)] = f'(x) \pm g'(x)$
• $\frac{d}{dx} [f(x) \cdot g(x)] = f(x) \cdot g'(x) + g(x) \cdot f'(x)$
• $\frac{d}{dx} [\frac{f(x)}{g(x)}] = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{(g(x))^2}; g(x) \neq 0$
• $\frac{d}{dx} [f(x)]^n = n [f(x)]^{n-1} \cdot f'(x)$

$$\frac{d}{dx} [f(x)]^n = n [f(x)]^{n-1} \cdot f'(x)$$

Example: find the derivative for the function

$$f(x) = (\frac{1+3x}{3x})(3-x)$$

Sol: $f'(x) = (\frac{1+3x}{3x}) \times (-1) + (3-x) \times \frac{3x \times 3 - (1+3x) \times 3}{9x^2}$
$$= \frac{-1-3x}{3x} + \frac{x-3}{3x^2} = \frac{-x-3x^2+x-3}{3x^2} = \frac{-(x^2+1)}{x^2}$$

Chain rule

If
$$y = f(u)$$
 and $u = g(x)$ then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$
If $y = f(t)$ and $x = g(t)$ then $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$
Example :
Find $\frac{dy}{dt}$

$$x = 2t - 5 \text{ and } y = x^{2} + \frac{x}{2}$$

Sol:
$$\frac{dy}{dx} = 2x + \frac{1}{2} , \quad \frac{dx}{dt} = 2$$

$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} \rightarrow \frac{dy}{dt} = (2x + \frac{1}{2}) \times 2 = 4x + 1 = 8t - 19.$$

Example :

Example :
Find
$$\frac{dy}{dx}$$
 if $x = t + \frac{1}{t}y = t - \frac{1}{t}$
Sol:
 $\frac{dy}{dt} = 1 + \frac{1}{t^2}$, $\frac{dx}{dt} = 1 - \frac{1}{t^2}$
 $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} \rightarrow \frac{dy}{dx} = \frac{1 + \frac{1}{t^2}}{1 - \frac{1}{t^2}} = \frac{t^2 + 1}{t^2} = \frac{t^2 + 1}{t^2 - 1}$

Exercises:H.WFind dy/dx and by using chain rule

1.
$$y = x^2 \sqrt{2x^2 + 3}$$

3. $y = \left(\frac{\sqrt{x}}{1+x}\right)^2$
5. $y = \sqrt{t^2 - 4} + 3$, $x = 3t\sqrt{2t+1}$
2. $y = 4x \sqrt{x + \sqrt{x}}$
4. $y = t - \frac{1}{t^2}$, $x = t + \frac{1}{t^2}$