Real Numbers
Intervals:
The interval is a subset of real numbers \mathfrak{R} and contains three types

- open interval (a,b)
- closed interval $[\mathrm{a}, \mathrm{b}]$
- half closed and half open (a, b, , $[\mathrm{a}, \mathrm{b})$

$$
\begin{array}{ll}
(a, b)=\{x \mid a<x<b\} & \text { Open } \\
{[a, b]=\{x \mid a \leq x \leq b\}} & \text { Closed } \\
{[a, b)=\{x \mid a \leq x<b\}} & \text { Half-open }
\end{array}
$$

$(a, b]=\{x \mid a<x \leq b\} \quad$ Half-open

$(a, \infty)=\{x \mid x>a\} \quad$ Open

$[a, \infty)=\{x \mid x \geq a\}$
Closed

$(-\infty, b)=\{x \mid x<b\}$
Open

$(-\infty, b]=\{x \mid x \leq b\}$
Closed

$(-\infty, \infty)=\mathcal{R}$ (set of all real numbers)

Both open

Real functions

Function: a relationship between the two groups so that each element of the domain group is linked to only a single element of a group

The opposite field and write $y=f(x)$
Domain group values (the possible values for x) Domain for x.
Range : which is a subset of the domain group contrast (the possible values for y with respect to values for x)

Example:

Function	Domain (\boldsymbol{x})	Range (\boldsymbol{y})
$y=x^{2}$	$(-\infty, \infty)$	$[0, \infty)$
$y=1 / x$	$(-\infty, 0) \cup(0, \infty)$	$(-\infty, 0) \cup(0, \infty)$
$y=\sqrt{x}$	$[0, \infty)$	$[0, \infty)$
$y=\sqrt{4-x}$	$(-\infty, 4]$	$[0, \infty)$
$y=\sqrt{1-x^{2}}$	$[-1,1]$	$[0,1]$

Solution:The formula $y=x^{2}$ gives a real y-value for any real number x, so the domainis $(-\infty, \infty)$. The range of $y=x^{2}$ is $[0, \infty)$ because the square of any real number isnonnegative and every nonnegative number y is the square of its own square root, $y=(\sqrt{y})^{2}$ for $y \geq 0$.
The formula $y=1 / x$ gives a real y-value for every x except $x=0$ We cannot divide any number by zero. The range of $y=1 / x$ the set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since $y=1 /(1 / y)$.
The formula $y=\sqrt{x}$ gives a real y-value only if $x \geq 0$. The range of $y=\sqrt{x}$ is $[0, \infty)$ because every nonnegative number is some number's square root (namely, it is the square root of its own square).
In $y=\sqrt{4-x}$ the quantity $4-x$ cannot be negative. That is, $4-x \geq 0$,or $x \leq 4$
The formula gives real y-values for all $x \leq 4$ The range of is $[0, \infty)$,
the set of all nonnegative numbers.
The finalformula gives a real y-value for every x in the closed interval From -1 to 1 . Outside this domain, $1-x^{2}$ is negative and its square root is not a real number. The values of $1-x^{2}$ vary from 0 to 1 on the given domain, and the square rootsof these values do the same. The range of $\sqrt{1-x^{2}}$ is $[0,1]$.

Limits

We say the real number L is the limit of the function f when $x \rightarrow x_{0}$ as written $\lim _{x \rightarrow x_{0}} f(x)=L$.
Note that the limit Spread over inside the parentheses of summation or subtract, multiply, divide for two functions .

Example: Evaluate the limit

$$
\begin{aligned}
& \text { 1. } \lim _{x \rightarrow 1} \frac{2 x^{4}-6 x^{3}+x^{2}+3}{x-1} \\
& =\lim _{x \rightarrow 1} 2 x^{3}-4 \mathrm{x}^{2}-3 x-3=-8 \\
& \begin{array}{r}
2 x^{3}-4 x^{2}-3 x-3 \\
2 x^{4}-6 x^{3}+x^{2}+3
\end{array} \\
& \bar{\mp} 2 x^{4} \pm 2 x^{3} \\
& -4 x^{3}+x^{2}+3 \\
& \frac{ \pm 4 x^{3} \mp 4 x^{2}}{-3 x^{2}+3} \\
& \pm 3 x^{2} \mp 3 x \\
& -3 x+3 \\
& \pm 3 x \mp 3 \\
& 0 \\
& \text { 2. } \lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x} \times \frac{\sqrt{4+x}+2}{\sqrt{4+x}+2}=\lim _{x \rightarrow 0} \frac{4+x-4}{x 4+x+2 x}=\lim _{x \rightarrow 0} \frac{x}{x \sqrt{4+x}+2}=\frac{1}{4}
\end{aligned}
$$

Exercises: Evaluate the limits H.W

$$
\begin{aligned}
& \text { - } \lim _{x \rightarrow 2} \frac{x^{4}-16}{x-2} \\
& \text { - } \lim _{x \rightarrow-1} \frac{x^{3}-x^{2}-5 x-2}{(x+1)^{2}} \\
& \text { - } \lim _{x \rightarrow 0} \frac{\sqrt[3]{1+x}-1}{x}
\end{aligned}
$$

Continuity

Continuity Test

A function $f(x)$ is continuous at $x=c$ if and only if it meets the following three
conditions.

1. $f(c)$ exists (c lies in the domain of f)
2. $\lim _{x \rightarrow c} f(x)$ exists (f has a limitas $x \rightarrow c$)
3. $\lim f(x)=f(c)$ (the limit equals the function value)

Example:A Continuous Extension
Show that $f(x)=\frac{x^{2}+x-6}{x^{2}-4}$
has a continuous extension to $x=2$ and find that extension.
Solution: Although $f(2)$ is not defined, if $x \neq 2$ we have
$f(x)=\frac{x^{2}+x-6}{x^{2}-4}=\frac{(x-2)(x+3)}{(x-2)(x+2)}=\frac{x+3}{x+2}$
The new function $F(x)=\frac{x+3}{x+2}$
is equal to $f(x)$ for $x \neq 2 \quad$ but is continuous at $x=2$ having there the value of 5/4. Thus F is the continuous extension of f to $x=2$ and $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}-4}=\lim _{x \rightarrow 2} f(x)=\frac{5}{4}$.

Derivative

The derivative of function $f(x)$ with respect to x is $f^{\prime}(x)$ as define
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Rules of derivatives :
Let $f(x)$ and $g(x)$ are differentiable functions and letc is a constant, $n \in \mathfrak{R}$,then

- $\frac{d}{d} c=0$
- $\frac{d}{d x}[f(x) \mp g(x)]=f^{\prime}(x) \mp g^{\prime}(x)$
- $\frac{d}{d x}[f(x) \cdot g(x)]=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x)$
- $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \cdot f^{\prime}(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}} ; g(x) \neq 0$
- $\frac{d}{d x}[f(x)]^{n}=n[f(x)]^{n-1} \cdot f^{\prime}(x)$

Example: find the derivative for the function

- $f(x)=\left(\frac{1+3 x}{3 x}\right)(3-x)$

Sol: $f^{\prime}(x)=\left(\frac{1+3 x}{3 x}\right) \times(-1)+(3-x) \times \frac{3 x \times 3-(1+3 x) \times 3}{9 x^{2}}$
$=\frac{-1-3 x}{3 x}+\frac{x-3}{3 x^{2}}=\frac{-x-3 x^{2}+x-3}{3 x^{2}}=\frac{-\left(x^{2}+1\right)}{x^{2}}$

Chain rule

If $y=f(u)$ and $u=g(x)$ then $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$
If $y=f(t)$ and $x=g(t)$ then $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$
Example :
Find $\frac{d y}{d t}$
$x=2 t-5$ and $y=x^{2}+\frac{x}{2}$
Sol:
$\frac{d y}{d x}=2 x+\frac{1}{2}, \quad \frac{d x}{d t}=2$
$\frac{d y}{d t}=\frac{d y}{d x} \times \frac{d x}{d t} \rightarrow \frac{d y}{d t}=\left(2 x+\frac{1}{2}\right) \times 2=4 x+1=8 t-19$.
Example :
Find $\frac{d y}{d x}$ if $x=t++_{t}^{1} y=t-{ }_{-}^{1}$
Sol:
$\frac{d y}{d t}=1+\frac{1}{t^{2}} \quad, \frac{d x}{d t}=1-\frac{1}{t^{2}}$
$\frac{d y}{d x}=\frac{d y / d t}{d x / d t} \rightarrow \frac{d y}{d x}=\frac{1+\frac{1}{t^{2}}}{1-\frac{1}{t^{2}}}=\frac{\frac{t^{2}+1}{t^{2}}}{\frac{t^{2}-1}{t^{2}}}=\frac{t^{2}+1}{t^{2}-1}$

Exercises:
H.W

Find dy/dx and by using chain rule

1. $y=x^{2} \sqrt{2 x^{2}+3}$
2. $y=4 x \sqrt{x+\sqrt{x}}$
3. $y=\left(\frac{\sqrt{x}}{1+x}\right)^{2}$
4. $y=t-\frac{1}{t^{2}}, \quad x=t+\frac{1}{t^{2}}$
5. $y=\sqrt{t^{2}-4}+3, \quad x=3 t \sqrt{2 t+1}$
