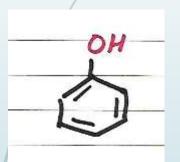
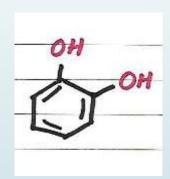
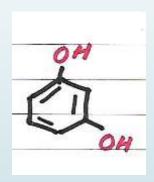
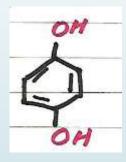
PHENOLS

CHAPTER 18 XII FDC SIDRA JAVED

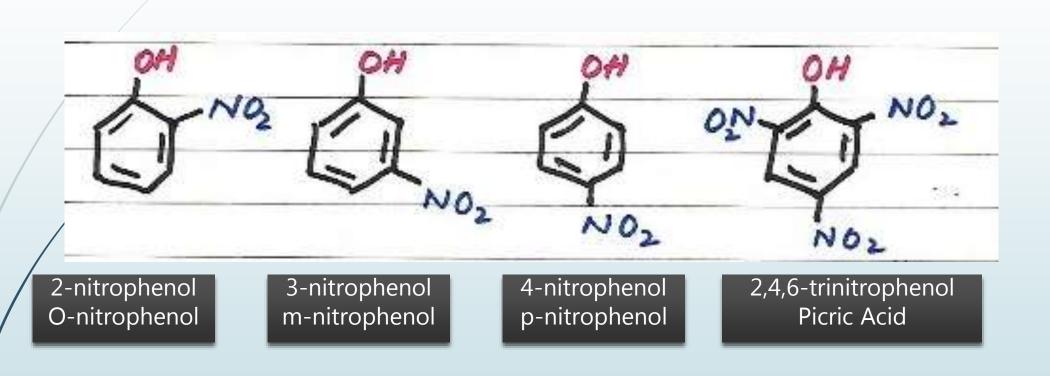

Prepared By: Sidra Javed


PHENOLS


- Aromatic compounds containing one or more OH groups directly attached with carbon of benzene ring are called Phenols.
- Simplest phenol is Carbolic Acid C₆H₅OH
- Term Phenol is derived from an old name of benzene
 - Phene
- ightharpoonup Phenyl : C_6H_5


NOMENCLATURE OF PHENOLS

■ In IUPAC –OH group is represented as hydroxyl. It is used as a prefix, while benzene part of the molecule is used as suffix.

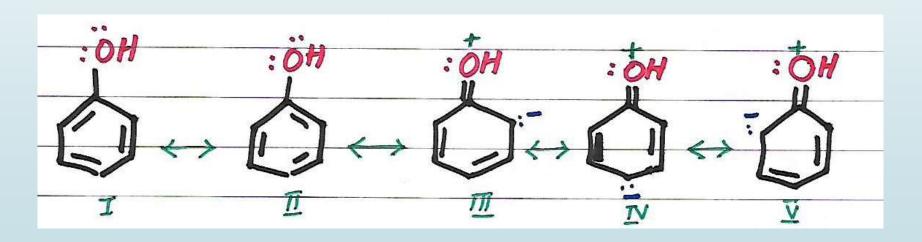


Phenol

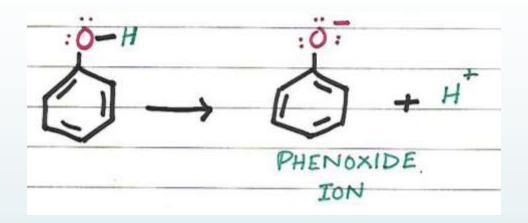
1,2- dihydorxybenzene O-hydroxyl phenol (Catechol) 1,3- dihydorxybenzene m-hydroxyl phenol (Resorcinol) 1,4- dihydorxybenzene p-hydroxyl phenol (Hydroquinone)

NOMENCLATURE

STRUCTURE OF PHENOLS


- The alcohol functional group consists of O atom bonded to sp^2 hybridized aromatic C atom and H atom via σ bond
- Both C-O and O-H bonds are polar
- Conjugation exist between an unshared electron pair of the O and Benzene Ring
- This results in, as compared to alcohols:
 - A shorter C-O bond
 - A more basic OH group
 - A more acidic OH proton

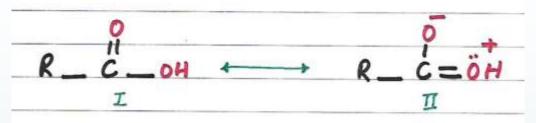
PHYSICAL PROPERTIES OF PHENOLS


- Colorless, crystalline, poisonous solid with phenolic odor
- Melting point 41°C and Boiling Point 182°C
- Sparingly soluble in water forming pink solution at room temperature
- **■** Completely soluble above 68.5°C
- Causes blisters on skin
- Used as disinfectants and in washrooms

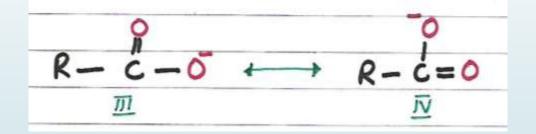
ACIDITY OF PHENOLS

- Phenols are more acidic (pKa ≈ 10) than alcohol (pKa ≈ 16-20)
- Phenols are less acidic than **Carboxylic** acids (pKa ≈ 5)
- **■** COMPARISON OF ACIDITY OF PHENOLS AND ALCOHOLS
 - Phenol exists as resonance hybrid of following structures

Due to resonance O atom acquires a positive charge and hence attracts electron pair of O-H bond leading to the release of H⁺

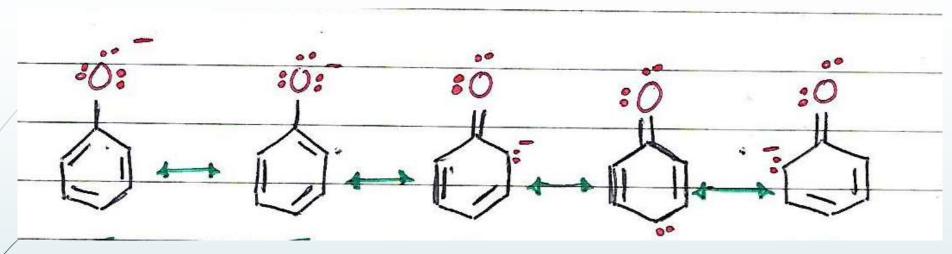


- Carbon atom of C-OH group of phenol (sp² hybridized) is more electrophilic than Carbon atom in Alcohols (sp³ hybridized)
- In phenols, a greater inductive effect facilitated release of proton
- Thus phenols are more acidic than alcohols because resonance is impossible in alcohols
- Phenoxide is more resonance stabilized than phenol but in case of alcohol, alkoxide is not stable because there is no possibility for the delocalization of negative charge.


Prepared By: Sidra Javed

COMPARISON OF ACIDITY OF PHENOLS AND CARBOXYLIC ACIDS

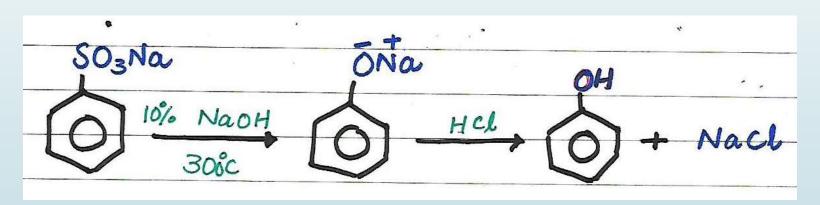
Resonating structures of carboxylic acids:



- Carboxylic acids ionize as: R-COOH → R-COO⁻ + H+
- The carboxylate anion exhibits following resonating structures:

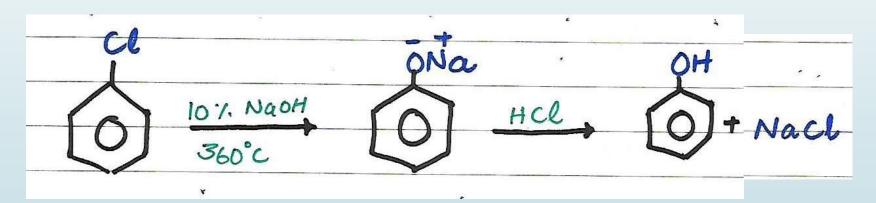
- The resonating structures of RCOOH (I and II) are not equivalent and hence less stable
- The resonating structures of RCOO⁻ ion (III and IV) are equivalent and hence more stable
- Thus RCOOH have tendency to undergo ionization and form more stable carboxylate ion and proton

■ The resonating structures of phenoxide ion are not equivalent as shown below:

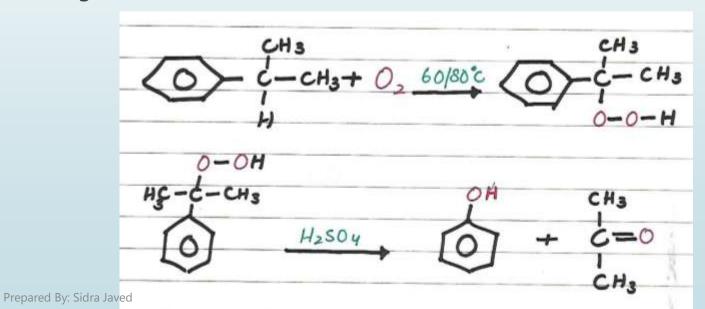


- The resonating structures of RCOO⁻ ion are equivalent. Hence RCOO⁻ ion is relatively more resonance stabilized that Phenoxide ion.
- Thus a carboxylic acid is more acidic than a phenol.
- RELATIVE ACIDITY ORDER OF SOME COMMON COMPOUNDS: $RCOOH > H_2CO_3 > C_6H_5OH > H_2O > ROH$

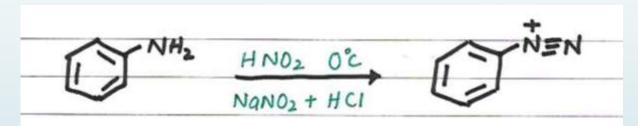
■ EFFECT OF SUBSTITUENTS ON THE ACIDITY OF PHENOLS


- Electron attracting substituents tend to disperse negative charge of the phenoxide ion thus stabilize the ion and increase the acidity of phenols.
- ► Electron releasing substituents tend to intensify the charge, destabilize the ion, diminish the resonance and decrease the acidity.

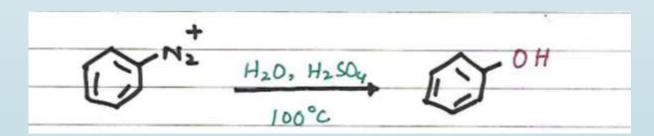
- **REACTION OF SODIUM SALT OF BENZENE SULFONIC ACID** WITH NaOH:
 - Sodium benzene sulfonate on fusion with strong alkali like NaOH at 300°C give sodium phenoxide which on treatment with HCl gives phenol


■ BASE HYDROLYSIS OF CHLOROBENZEN (DOW'S METHOD)

■ Chlorobenzene is hydrolysed by heating with 10% NaOH at 360°C under high pressure to form sodium phenoxide which on treating with HCl gives phenol

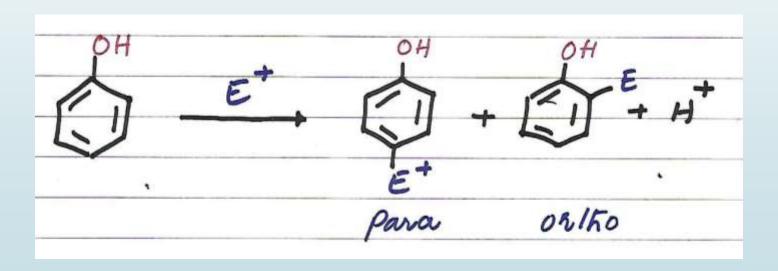

ACIDIC OXIDATION OF CUMENE

- It is recently developed commercial method for preparation of phenol. Cumene is oxidized by atmospheric oxygen is presence of metal catalyst into Cumene Hydroperoxide.
- The hydroperoxide is converted into phenol through acid catalyzed arrangement



■ Preparation of phenol from Aryl Diazonium salts

■ Aryl diazonium salts are prepared by reaction of aryl amines with nitrous acid

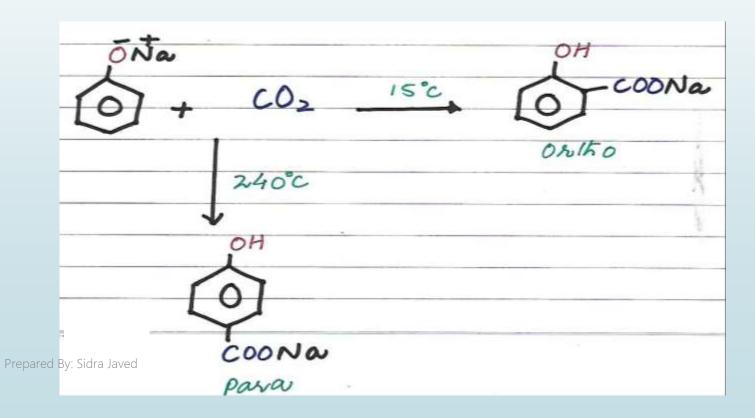


Aryl diazonium salts can be converted into phenols using $H_2O/H_2SO_4/$ heat

REACTIVITY AND REACTIONS OF PHENOLS

- Phenols are very reactive towards electrophilic aromatic substitution.
- OH group is strongly activating ortho-/para- directing group.
- **ELECTROPHILIC AROMATIC SUBSTITUTION**

Strong activation means milder reaction conditions than those used for benzene.


Reaction	Benzene	Phenol
Nitration	Conc. HNO ₃ / H ₂ SO ₄	Dil. HNO ₃ in H ₂ O or CH ₃ COOH
Sulfonation	H ₂ SO ₄ or SO ₃ /H ₂ SO ₄	Conc. H ₂ SO ₄
Halogenation	X ₂ /Fe or FeX ₃	X_2
Alkylation	RCI/AICI ₃	ROH/H ⁺ or RCI/AICI ₃
Acylation	RCOCI/AICI ₃	RCOCI/AICI ₃
Nitrosation	-	Aq. NaNO ₂ /H ⁺

■ Phenols are so activated that poly-substitution can be a problem.

OXIDATION OF PHENOLS

- Phenols are very reactive towards oxidizing agent.
- The oxidation takes place through several steps eventually destroying the ring.

- REACTION WITH SODIUM METAL / CARBOXYLATION OF PHENOLS (KOLBE-SCHMITT REACTION)
- The reaction of sodium salt of phenol with CO_2 is called Kolbe Reaction. It is carbonation of phenol."
- At low temperature Sodium salicylate (sodium-o-hydroxyl benzoate) is formed, at higher temperature o-product is isomerizes to p-isomer
- CO₂ act as electrophilic center in this reaction. Acidification of the salt gives corresponding hydroxyl acid.

DIFFERENCE BETWEEN ALCOHOLS AND PHENOLS

ALCOHOL

- OH group is attached to an alkyl group
- Hydroxyl derivatives of alkane
- The compounds in which one hydrogen of water is replaced by an alkyl group
- General formula ROH
- Løwer alcohols are colorless liquids
- They characteristics sweet smell and burning taste
- **p**Ka ≈ 16 20
- Readily soluble in water but solubility decreases in higher alcohols
- Alcohols react in two ways:
 - Reaction in C-O bond breaks
 - Prepared By: Sidra JavedReaction in O-H bond breaks

PHENOL

- OH group is attached to an aryl group
- Hydroxyl derivatives of benzene
- The compounds in which one hydrogen of water is replaced by an aryl group
- General formula C₆H₅OH
- Colorless crystalline deliquescent solids (M.P 41°C)
- They have a characteristics phenolic odor
- pKa ≈ 10
- Sparingly soluble in water forming a pink solution but completely soluble above 68.5°C
- Phenolate ions have resonance structures but alcohols do not have resonance structures

The End