1. Find the stationary point of the surface $f(x, y)=x^{2}+y^{2}$ and determine its nature. Sketch the contour map represented by z.

Let $f(x, y)=z=x^{2}+y^{2}$
(i) $\frac{\partial z}{\partial x}=2 x \quad$ and $\quad \frac{\partial z}{\partial y}=2 y$
(ii) For stationary points, $\quad 2 x=0$ from which, $x=0$
(iii) The coordinates of the stationary point are $(0,0)$
(iv) $\frac{\partial^{2} z}{\partial x^{2}}=2 \quad \frac{\partial^{2} z}{\partial y^{2}}=2 \quad \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial x}(2 y)=0$
(v) When $x=0, y=0, \frac{\partial^{2} z}{\partial x^{2}}=2 \quad \frac{\partial^{2} z}{\partial y^{2}}=2$ and $\quad \frac{\partial^{2} z}{\partial x \partial y}=0$
(vi) $\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=0$
(vii) $\Delta_{(0,0)}=\left(\frac{\partial^{2} Z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} Z}{\partial x^{2}}\right)\left(\frac{\partial^{2} Z}{\partial y^{2}}\right)=(0)^{2}-(2)(2)=-4 \quad$ which is negative
(viii) Since $\Delta<0$ and $\frac{\partial^{2} Z}{\partial x^{2}}>0$ then $(0,0)$ is a minimum point.

The contour map for z is shown below.

2. Find the maxima, minima and saddle points for the following functions:
(a) $f(x, y)=x^{2}+y^{2}-2 x+4 y+8$
(b) $f(x, y)=x^{2}-y^{2}-2 x+4 y+8$
(c) $f(x, y)=2 x+2 y-2 x y-2 x^{2}-y^{2}+4$
(a) Let $f(x, y)=z=x^{2}+y^{2}-2 x+4 y+8$
(i) $\frac{\partial z}{\partial x}=2 x-2 \quad$ and $\quad \frac{\partial z}{\partial y}=2 y+4$
(ii) For stationary points, $2 x-2=0$ from which, $x=1$
and $\quad 2 y+4=0$ from which, $y=-2$
(iii) The coordinates of the stationary point are $(1,-2)$
(iv) $\frac{\partial^{2} Z}{\partial x^{2}}=2 \quad \frac{\partial^{2} Z}{\partial y^{2}}=2 \quad \frac{\partial^{2} Z}{\partial x \partial y}=\frac{\partial}{\partial x}(2 y+4)=0$
(v) When $x=1, y=-2, \frac{\partial^{2} Z}{\partial x^{2}}=2 \quad \frac{\partial^{2} Z}{\partial y^{2}}=2 \quad$ and $\quad \frac{\partial^{2} Z}{\partial x \partial y}=0$
(vi) $\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=0$
(vii) $\Delta_{(1,-2)}=\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} z}{\partial x^{2}}\right)\left(\frac{\partial^{2} z}{\partial y^{2}}\right)=(0)^{2}-(2)(2)=-4 \quad$ which is negative
(viii) Since $\Delta<0$ and $\frac{\partial^{2} Z}{\partial x^{2}}>0$ then $(1,-2)$ is a minimum point.
(b) Let $f(x, y)=z=x^{2}-y^{2}-2 x+4 y+8$
(i) $\frac{\partial z}{\partial x}=2 x-2 \quad$ and $\quad \frac{\partial z}{\partial y}=-2 y+4$
(ii) For stationary points, $2 x-2=0$ from which, $x=1$ and $\quad-2 y+4=0$ from which, $y=2$
(iii) The coordinates of the stationary point are $(1,2)$
(iv) $\frac{\partial^{2} Z}{\partial x^{2}}=2 \quad \frac{\partial^{2} Z}{\partial y^{2}}=-2 \quad \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial x}(-2 y+4)=0$
(v) When $x=1, y=2, \frac{\partial^{2} z}{\partial x^{2}}=2 \quad \frac{\partial^{2} z}{\partial y^{2}}=-2 \quad$ and $\quad \frac{\partial^{2} z}{\partial x \partial y}=0$
(vi) $\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=0$
(vii) $\Delta_{(1,2)}=\left(\frac{\partial^{2} Z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} Z}{\partial x^{2}}\right)\left(\frac{\partial^{2} Z}{\partial y^{2}}\right)=(0)^{2}-(2)(-2)=4 \quad$ which is positive
(viii) Since $\Delta>0$ then $(1,2)$ is a saddle point
(c) Let $f(x, y)=z=2 x+2 y-2 x y-2 x^{2}-y^{2}+4$
(i) $\frac{\partial z}{\partial x}=2-2 y-4 x \quad$ and $\quad \frac{\partial z}{\partial y}=2-2 x-2 y$
(ii) For stationary points, $2-2 y-4 x=0$
i.e.

$$
\begin{equation*}
1-y-2 x=0 \tag{1}
\end{equation*}
$$

and

$$
2-2 x-2 y=0
$$

$$
\begin{equation*}
1-x-y=0 \tag{2}
\end{equation*}
$$

From (1), $y=1-2 x$
Substituting in (2) gives: $1-x-(1-2 x)=0$
i.e. $1-x-1+2 x=0$ from which, $x=0$

When $x=0$ in equations (1) and (2), $y=1$
(iii) The coordinates of the stationary point are $(0,1)$
(iv) $\frac{\partial^{2} z}{\partial x^{2}}=-4 \quad \frac{\partial^{2} z}{\partial y^{2}}=-2 \quad \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial x}(2-2 x-2 y)=-2$
(v) When $x=0, y=1, \frac{\partial^{2} z}{\partial x^{2}}=-4 \quad \frac{\partial^{2} z}{\partial y^{2}}=-2 \quad$ and $\quad \frac{\partial^{2} z}{\partial x \partial y}=-2$
(vi) $\left(\frac{\partial^{2} Z}{\partial x \partial y}\right)^{2}=(-2)^{2}=4$
(vii) $\Delta_{(0,1)}=\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} z}{\partial x^{2}}\right)\left(\frac{\partial^{2} z}{\partial y^{2}}\right)=4-(-4)(-2)=-4 \quad$ which is negative
(viii) Since $\Delta<0$ and $\frac{\partial^{2} Z}{\partial x^{2}}<0$ then $(0,1)$ is a maximum point
3. Determine the stationary values of the function $f(x, y)=x^{3}-6 x^{2}-8 y^{2}$ and distinguish between them.

Let $f(x, y)=z=x^{3}-6 x^{2}-8 y^{2}$
(i) $\frac{\partial z}{\partial x}=3 x^{2}-12 x \quad$ and $\quad \frac{\partial z}{\partial y}=-16 y$
(ii) For stationary points, $3 x^{2}-12 x=0$ i.e. $3 x(x-4)$ from which, $x=0$ and $x=4$ and $-16 y=0$ from which, $y=0$
(iii) The coordinates of the stationary points are $(0,0)$ and $(4,0)$
(iv) $\frac{\partial^{2} Z}{\partial x^{2}}=6 x-12 \quad \frac{\partial^{2} Z}{\partial y^{2}}=-16 \quad \frac{\partial^{2} Z}{\partial x \partial y}=\frac{\partial}{\partial x}(-16 y)=0$
(v) When $x=0, y=0, \frac{\partial^{2} z}{\partial x^{2}}=-12 \quad \frac{\partial^{2} z}{\partial y^{2}}=-16 \quad$ and $\quad \frac{\partial^{2} z}{\partial x \partial y}=0$

When $x=4, y=0, \frac{\partial^{2} z}{\partial x^{2}}=12 \quad \frac{\partial^{2} z}{\partial y^{2}}=-16 \quad$ and $\quad \frac{\partial^{2} z}{\partial x \partial y}=0$
(vi) For $(0,0),\left(\frac{\partial^{2} Z}{\partial x \partial y}\right)^{2}=0$

For $(4,0), \quad\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=0$
(vii) $\Delta_{(0,0)}=\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} z}{\partial x^{2}}\right)\left(\frac{\partial^{2} z}{\partial y^{2}}\right)=(0)^{2}-(-12)(-16)=-192$ which is negative $\Delta_{(4,0)}=\left(\frac{\partial^{2} Z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} Z}{\partial x^{2}}\right)\left(\frac{\partial^{2} Z}{\partial y^{2}}\right)=(0)^{2}-(12)(-16)=+192 \quad$ which is positive
(viii) Since $\Delta_{(0,0)}<0$ and $\frac{\partial^{2} Z}{\partial x^{2}}<0$ then $(0,0)$ is a maximum point

Since $\Delta_{(4,0)}>0$ then $(4,0)$ is a saddle point
4. Locate the stationary points of the function $z=12 x^{2}+6 x y+15 y^{2}$
(i) $\frac{\partial z}{\partial x}=24 x+6 y \quad$ and $\quad \frac{\partial z}{\partial y}=6 x+30 y$
(ii) For stationary points, $\quad 24 x+6 y=0$
and
$6 x+30 y=0$
(iii) From (1), $\quad 6 y=-24 x$ i.e. $y=-4 x$

Substituting in (2) gives: $6 x+30(-4 x)=0$
i.e.

$$
6 x=120 x
$$

$$
\text { i.e. } \quad x=0
$$

When $x=0, y=0$, hence the coordinates of the stationary point are $(0,0)$
(iv) $\frac{\partial^{2} Z}{\partial x^{2}}=24 \quad \frac{\partial^{2} Z}{\partial y^{2}}=30 \quad \frac{\partial^{2} Z}{\partial x \partial y}=\frac{\partial}{\partial x}(6 x+30 y)=6$
(v) When $x=0, y=0, \frac{\partial^{2} z}{\partial x^{2}}=24 \quad \frac{\partial^{2} z}{\partial y^{2}}=30 \quad$ and $\quad \frac{\partial^{2} z}{\partial x \partial y}=6$
(vi) $\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=36$
(vii) $\Delta_{(0,0)}=\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} z}{\partial x^{2}}\right)\left(\frac{\partial^{2} z}{\partial y^{2}}\right)=(6)^{2}-(24)(30) \quad$ which is negative
(viii) Since $\Delta<0$ and $\frac{\partial^{2} Z}{\partial x^{2}}>0$ then $(0,0)$ is a minimum point
5. Find the stationary points of the surface $z=x^{3}-x y+y^{3}$ and distinguish between them.
(i) $\frac{\partial z}{\partial x}=3 x^{2}-y \quad$ and $\quad \frac{\partial z}{\partial y}=-x+3 y^{2}$
(ii) For stationary points,

$$
\begin{gather*}
3 x^{2}-y=0 \tag{1}\\
-x+3 y^{2}=0 \tag{2}
\end{gather*}
$$

and
(iii) From (1),

$$
y=3 x^{2}
$$

Substituting in (2) gives: $-x+3\left(3 x^{2}\right)^{2}=0$

$$
-x+27 x^{4}=0
$$

and

$$
x\left(27 x^{3}-1\right)=0
$$

i.e. $\quad x=0 \quad$ or $\quad 27 x^{3}-1=0 \quad$ i.e. $\quad x^{3}=\frac{1}{27} \quad$ and $\quad x=\sqrt[3]{\left(\frac{1}{27}\right)}=\frac{1}{3}$

Hence, $x=0$ or $x=\frac{1}{3}$
From (1), when $x=0, y=0$
and when $x=\frac{1}{3}, y=3 x^{2}=3\left(\frac{1}{3}\right)^{2}=\frac{1}{3}$
Hence, the stationary points occur at $(0,0)$ and $\left(\frac{1}{3}, \frac{1}{3}\right)$
(iv) $\frac{\partial^{2} Z}{\partial x^{2}}=6 x \quad \frac{\partial^{2} Z}{\partial y^{2}}=6 y \quad \frac{\partial^{2} Z}{\partial x \partial y}=\frac{\partial}{\partial x}\left(-x+3 y^{2}\right)=-1$
(v) For (0, 0), $\quad \frac{\partial^{2} Z}{\partial x^{2}}=0 \quad \frac{\partial^{2} Z}{\partial y^{2}}=0 \quad$ and $\quad \frac{\partial^{2} Z}{\partial x \partial y}=-1$

$$
\text { For }\left(\frac{1}{3}, \frac{1}{3}\right), \quad \frac{\partial^{2} z}{\partial x^{2}}=2 \quad \frac{\partial^{2} z}{\partial y^{2}}=2 \quad \text { and } \quad \frac{\partial^{2} z}{\partial x \partial y}=-1
$$

(vi) For (0, 0), $\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=1$

$$
\text { For }\left(\frac{1}{3}, \frac{1}{3}\right),\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=1
$$

(vii) $\Delta_{(0,0)}=\left(\frac{\partial^{2} Z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} Z}{\partial x^{2}}\right)\left(\frac{\partial^{2} Z}{\partial y^{2}}\right)=1-(0)(0)=1 \quad$ which is positive
$\Delta_{\left(\frac{1}{3}, \frac{1}{3}\right)}=1-(2)(2)=-3 \quad$ which is negative
(viii) Since $\Delta_{(0,0)}>0$ then $(0,0)$ is a saddle point
$\Delta_{\left(\frac{1}{3}, \frac{1}{3}\right)}<0$ and $\frac{\partial^{2} Z}{\partial x^{2}}>0$ then $\left(\frac{1}{3}, \frac{1}{3}\right)$ is a minimum point

EXERCISE

1. The function $z=x^{2}+y^{2}+x y+4 x-4 y+3$ has one stationary value. Determine its coordinates and its nature.
(i) $\frac{\partial z}{\partial x}=2 x+y+4 \quad$ and $\quad \frac{\partial z}{\partial y}=2 y+x-4$
(ii) For stationary points,

$$
\begin{array}{r}
2 x+y+4=0 \\
2 y+x-4=0 \tag{2}
\end{array}
$$ and

(iii) (1) + (2) gives:
$3 x+3 y=0 \quad$ from which, $y=-x$
Substituting in (1),
$2 x-x+4=0 \quad$ i.e. $x=-4$, thus $y=+4$
Hence, the stationary point occurs at $(-4,4)$
(iv) $\frac{\partial^{2} Z}{\partial x^{2}}=2 \quad \frac{\partial^{2} Z}{\partial y^{2}}=2 \quad \frac{\partial^{2} Z}{\partial x \partial y}=\frac{\partial}{\partial x}(2 y+x-4)=1$
(v) When $x=-4, y=4, \frac{\partial^{2} z}{\partial x^{2}}=2 \quad \frac{\partial^{2} z}{\partial y^{2}}=2 \quad$ and $\quad \frac{\partial^{2} z}{\partial x \partial y}=1$
(vi) $\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=1$
(vii) $\quad \Delta_{(-4,4)}=\left(\frac{\partial^{2} Z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} z}{\partial x^{2}}\right)\left(\frac{\partial^{2} Z}{\partial y^{2}}\right)=(1)^{2}-(2)(2)=-3$ which is negative
(viii) Since $\Delta<0$ and $\frac{\partial^{2} Z}{\partial x^{2}}>0$ then $(-4,4)$ is a minimum point
2. An open rectangular container is to have a volume of $32 \mathrm{~m}^{3}$. Determine the dimensions and the total surface area such that the total surface area is a minimum.

Let the dimensions of the container be x, y and z as shown below.

Volume $V=x y z=32$
Surface area, $S=x y+2 y z+2 x z$
From equation (1), $z=\frac{32}{x y}$
Substituting in equation (2) gives:

$$
S=x y+2 y\left(\frac{32}{x y}\right)+2 x\left(\frac{32}{x y}\right)
$$

i.e. $S=x y+\frac{64}{x}+\frac{64}{y} \quad$ which is a function of two variables
$\frac{\partial S}{\partial x}=y-\frac{64}{x^{2}}=0$ for a stationary point, hence $x^{2} y=64$
$\frac{\partial S}{\partial y}=x-\frac{64}{y^{2}}=0$ for a stationary point, hence $x y^{2}=64$
Dividing equation (3) by (4) gives:

$$
\frac{x^{2} y}{x y^{2}}=1 \quad \text { i.e. } \frac{x}{y}=1 \quad \text { i.e. } \quad x=y
$$

Substituting $y=x$ in equation (3) gives $x^{3}=64$, from which, $x=4 \mathrm{~m}$
Hence $y=4 \mathrm{~m}$ also
From equation (1), (4)(4) $z=32$ from which, $z=\frac{32}{16}=2 \mathrm{~m}$

$$
\frac{\partial^{2} S}{\partial x^{2}}=\frac{128}{x^{3}}, \frac{\partial^{2} S}{\partial y^{2}}=\frac{128}{y^{3}} \text { and } \frac{\partial^{2} S}{\partial x \partial y}=1
$$

When $x=y=4, \frac{\partial^{2} S}{\partial x^{2}}=2, \frac{\partial^{2} S}{\partial y^{2}}=2$ and $\frac{\partial^{2} S}{\partial x \partial y}=1$

$$
\Delta=(1)^{2}-(2)(2)=-3
$$

Since $\Delta<0$ and $\frac{\partial^{2} S}{\partial x^{2}}>0$, then the surface area S is a minimum
Hence the minimum dimensions of the container to have a volume of $32 \mathrm{~m}^{3}$ are 4 m by 4 m by 2 m
From equation (2), minimum surface area, $S=(4)(4)+2(4)(2)+2(4)(2)$

$$
=16+16+16=48 \mathrm{~m}^{2}
$$

3. Determine the stationary values of the function $f(x, y)=x^{4}+4 x^{2} y^{2}-2 x^{2}+2 y^{2}-1$ and distinguish between them.

Let $f(x, y)=z=x^{4}+4 x^{2} y^{2}-2 x^{2}+2 y^{2}-1$
(i) $\frac{\partial z}{\partial x}=4 x^{3}+8 x y^{2}-4 x \quad$ and $\quad \frac{\partial z}{\partial y}=8 x^{2} y+4 y$
(ii) For stationary points, $\quad 4 x^{3}+8 x y^{2}-4 x=0$
and

$$
\begin{equation*}
8 x^{2} y+4 y=0 \tag{1}
\end{equation*}
$$

(iii) From (2),

$$
\begin{equation*}
4 y\left(2 x^{2}-1\right)=0 \quad \text { from which, } y=0 \tag{2}
\end{equation*}
$$

From (1), if $y=0$,

$$
4 x^{3}-4 x=0 \quad \text { i.e. } \quad 4 x\left(x^{2}-1\right)=0
$$

from which,

$$
x=0 \text { or } x= \pm 1
$$

Hence, the stationary points occur at $(0,0)$ and $(1,0)$ and $(-1,0)$
(iv) $\frac{\partial^{2} Z}{\partial x^{2}}=12 x^{2}+8 y^{2}-4 \quad \frac{\partial^{2} z}{\partial y^{2}}=8 x^{2}+4 \quad \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial x}\left(8 x^{2} y+4 y\right)=16 x y$
(v) For (0, 0), $\frac{\partial^{2} z}{\partial x^{2}}=-4 \quad \frac{\partial^{2} z}{\partial y^{2}}=4 \quad$ and $\quad \frac{\partial^{2} z}{\partial x \partial y}=0$

For (1, 0), $\frac{\partial^{2} z}{\partial x^{2}}=8 \quad \frac{\partial^{2} z}{\partial y^{2}}=12 \quad$ and $\quad \frac{\partial^{2} z}{\partial x \partial y}=0$
For $(-1,0), \quad \frac{\partial^{2} z}{\partial x^{2}}=8 \quad \frac{\partial^{2} z}{\partial y^{2}}=12 \quad$ and $\quad \frac{\partial^{2} z}{\partial x \partial y}=0$
(vi) For all three stationary points, $\left(\frac{\partial^{2} Z}{\partial x \partial y}\right)^{2}=0$
(vii) $\quad \Delta_{(0,0)}=\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} z}{\partial x^{2}}\right)\left(\frac{\partial^{2} z}{\partial y^{2}}\right)=(0)^{2}-(-4)(4)=32 \quad$ which is positive $\Delta_{(1,0)}=\left(\frac{\partial^{2} Z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} Z}{\partial x^{2}}\right)\left(\frac{\partial^{2} Z}{\partial y^{2}}\right)=(0)^{2}-(8)(12)=-96 \quad$ which is negative $\Delta_{(-1,0)}=\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} z}{\partial x^{2}}\right)\left(\frac{\partial^{2} z}{\partial y^{2}}\right)=(0)^{2}-(8)(12)=-96 \quad$ which is negative
(viii) Since $\Delta_{(0,0)}>0$, then $(0,0)$ is a saddle point

Since $\Delta_{(1,0)}<0$ and $\frac{\partial^{2} Z}{\partial x^{2}}>0$ then $(1,0)$ is a minimum point

Since $\Delta_{(-1,0)}<0$ and $\frac{\partial^{2} Z}{\partial x^{2}}>0$ then $(-1,0)$ is a minimum point
4. Determine the stationary points of the surface $f(x, y)=x^{3}-6 x^{2}-y^{2}$

Let $f(x, y)=z=x^{3}-6 x^{2}-y^{2}$
(i) $\frac{\partial z}{\partial x}=3 x^{2}-12 x \quad$ and $\quad \frac{\partial z}{\partial y}=-2 y$
(ii) For stationary points, $3 x^{2}-12 x=0$
and

$$
\begin{equation*}
-2 y=0 \tag{1}
\end{equation*}
$$

(iii) From (1)

$$
\begin{equation*}
3 x(x-4)=0 \quad \text { from which, } x=0 \text { or } x=4 \tag{2}
\end{equation*}
$$

From (2),

$$
y=0
$$

Hence, the stationary points occur at $(0,0)$ and $(4,0)$
(iv) $\frac{\partial^{2} Z}{\partial x^{2}}=6 x-12 \quad \frac{\partial^{2} Z}{\partial y^{2}}=-2 \quad \frac{\partial^{2} Z}{\partial x \partial y}=\frac{\partial}{\partial x}(-2 y)=0$
(v) At $(0,0), \quad \frac{\partial^{2} Z}{\partial x^{2}}=-12 \quad \frac{\partial^{2} Z}{\partial y^{2}}=-2$ and $\quad \frac{\partial^{2} Z}{\partial x \partial y}=0$

At $(4,0), \quad \frac{\partial^{2} Z}{\partial x^{2}}=12 \quad \frac{\partial^{2} Z}{\partial y^{2}}=-2 \quad$ and $\quad \frac{\partial^{2} z}{\partial x \partial y}=0$
(vi) For both points, $\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=0$
(vii) $\Delta_{(0,0)}=\left(\frac{\partial^{2} Z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} Z}{\partial x^{2}}\right)\left(\frac{\partial^{2} Z}{\partial y^{2}}\right)=(0)^{2}-(-12)(-2)=-24 \quad$ which is negative
$\Delta_{(4,0)}=(0)^{2}-(12)(-2)=24 \quad$ which is positive
(viii) Since $\Delta_{(0,0)}<0$ and $\frac{\partial^{2} z}{\partial x^{2}}<0$ then $(0,0)$ is a maximum point

Since $\Delta_{(4,0)}>0$ then $(4,0)$ is a saddle point
5. Locate the stationary points on the surface

$$
f(x, y)=2 x^{3}+2 y^{3}-6 x-24 y+16
$$

and determine their nature.

Let $f(x, y)=z=2 x^{3}+2 y^{3}-6 x-24 y+16$
(i) $\frac{\partial z}{\partial x}=6 x^{2}-6 \quad$ and $\quad \frac{\partial z}{\partial y}=6 y^{2}-24$
(ii) For stationary points,

$$
\begin{equation*}
6 x^{2}-6=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
6 y^{2}-24=0 \tag{2}
\end{equation*}
$$

(iii) From (1),

$$
6 x^{2}=6 \quad \text { from which, } x= \pm 1
$$

From (2),

$$
6 y^{2}=24 \quad \text { i.e. } y^{2}=4 \text { and } y= \pm 2
$$

Hence, the stationary points occur at $(1,2)$ and $(-1,-2)$ and $(-1,2)$ and $(1,-2)$
(iv) $\frac{\partial^{2} Z}{\partial x^{2}}=12 x \quad \frac{\partial^{2} Z}{\partial y^{2}}=12 y \quad \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial x}\left(6 y^{2}-24\right)=0$
(v) For (1, 2), $\frac{\partial^{2} Z}{\partial x^{2}}=12 \quad \frac{\partial^{2} Z}{\partial y^{2}}=24$ and $\quad \frac{\partial^{2} Z}{\partial x \partial y}=0$

For $(-1,-2), \quad \frac{\partial^{2} Z}{\partial x^{2}}=-12 \quad \frac{\partial^{2} Z}{\partial y^{2}}=-24 \quad$ and $\quad \frac{\partial^{2} Z}{\partial x \partial y}=0$
For (-1, 2), $\quad \frac{\partial^{2} Z}{\partial x^{2}}=-12 \quad \frac{\partial^{2} Z}{\partial y^{2}}=24 \quad$ and $\quad \frac{\partial^{2} Z}{\partial x \partial y}=0$
For (1,-2), $\frac{\partial^{2} Z}{\partial x^{2}}=12 \quad \frac{\partial^{2} Z}{\partial y^{2}}=-24 \quad$ and $\quad \frac{\partial^{2} z}{\partial x \partial y}=0$
(vi) For all four stationary points, $\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=0$
(vii) $\quad \Delta_{(1,2)}=\left(\frac{\partial^{2} Z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} Z}{\partial x^{2}}\right)\left(\frac{\partial^{2} Z}{\partial y^{2}}\right)=(0)^{2}-(12)(24)=-288 \quad$ which is negative $\Delta_{(-1,-2)}=\left(\frac{\partial^{2} Z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} Z}{\partial x^{2}}\right)\left(\frac{\partial^{2} Z}{\partial y^{2}}\right)=(0)^{2}-(-12)(-24)=-288 \quad$ which is negative $\Delta_{(-1,2)}=\left(\frac{\partial^{2} Z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} Z}{\partial x^{2}}\right)\left(\frac{\partial^{2} Z}{\partial y^{2}}\right)=(0)^{2}-(-12)(24)=+288 \quad$ which is positive $\Delta_{(1,-2)}=\left(\frac{\partial^{2} Z}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} Z}{\partial x^{2}}\right)\left(\frac{\partial^{2} Z}{\partial y^{2}}\right)=(0)^{2}-(12)(-24)=+288 \quad$ which is positive
(viii) Since $\Delta_{(-1,2)}>0$, then $(-1,2)$ is a saddle point

Since $\Delta_{(1,-2)}>0$, then $(1,-2)$ is a saddle point
Since $\Delta_{(1,2)}<0$ and $\frac{\partial^{2} Z}{\partial x^{2}}>0$ then $(1,2)$ is a minimum point
Since $\Delta_{(-1,-2)}<0$ and $\frac{\partial^{2} Z}{\partial x^{2}}<0$ then $(-1,-2)$ is a maximum point
6. A large marquee is to be made in the form of a rectangular box-like shape with canvas covering on the top, back and sides. Determine the minimum surface area of canvas necessary if the volume of the marquee is to be $250 \mathrm{~m}^{3}$.

A sketch of the marquee is shown above
Volume of marquee, $\quad V=x y z=250$
Surface area,

$$
\begin{equation*}
S=x y+y z+2 x z \tag{1}
\end{equation*}
$$

From (1),

$$
\begin{equation*}
z=\frac{250}{x y} \tag{2}
\end{equation*}
$$

Substituting in (2) gives: $S=x y+y\left(\frac{250}{x y}\right)+2 x\left(\frac{250}{x y}\right)=x y+\frac{250}{x}+\frac{500}{y}=x y+250 x^{-1}+500 y^{-1}$

$$
\frac{\partial S}{\partial x}=y-\frac{250}{x^{2}} \quad \text { and } \quad \frac{\partial S}{\partial y}=x-\frac{500}{y^{2}}
$$

For a stationary point, $\quad \frac{\partial S}{\partial x}=y-\frac{250}{x^{2}}=0$
from which, $y=\frac{250}{x^{2}} \quad$ or $\quad y x^{2}=250$
and

$$
\begin{equation*}
\frac{\partial S}{\partial y}=x-\frac{500}{y^{2}}=0 \tag{3}
\end{equation*}
$$

from which, $\quad x=\frac{500}{y^{2}} \quad$ or $\quad x y^{2}=500$
Dividing equation (3) by equation (4) gives:

$$
\frac{y x^{2}}{x y^{2}}=\frac{250}{500} \quad \text { i.e. } \quad \frac{x}{y}=\frac{1}{2} \quad \text { and } \quad y=2 x
$$

Substituting $y=2 x$ in equation (3) gives: $2 x^{3}=250 \quad$ and $\quad x=\sqrt[3]{125}=5 \mathrm{~m}$ and

$$
y=2 x=10 \mathrm{~m}
$$

From equation (1), $\quad x y z=250 \quad$ i.e. $\quad(5)(10) z=250$ from which, $z=5 \mathrm{~m}$

$$
\frac{\partial^{2} S}{\partial x^{2}}=\frac{750}{x^{3}} \quad \frac{\partial^{2} S}{\partial y^{2}}=\frac{1000}{y^{3}} \quad \text { and } \quad \frac{\partial^{2} S}{\partial x \partial y}=1
$$

When $x=5$ and $y=10, \quad \frac{\partial^{2} S}{\partial x^{2}}=6 \quad \frac{\partial^{2} S}{\partial y^{2}}=1 \quad$ and $\quad \frac{\partial^{2} S}{\partial x \partial y}=1$
$\Delta=\left(\frac{\partial^{2} S}{\partial x \partial y}\right)^{2}-\left(\frac{\partial^{2} S}{\partial x^{2}}\right)\left(\frac{\partial^{2} S}{\partial y^{2}}\right)=(1)^{2}-(6)(1)=-6 \quad$ which is negative
Since $\Delta<0$ and $\frac{\partial^{2} z}{\partial x^{2}}>0$ then the surface area is a minimum.
Minimum surface area, $S=x y+y z+2 x z$

$$
\begin{aligned}
& =(5)(10)+(10)(5)+(2)(5)(5) \\
& =50+50+50=150 \mathrm{~m}^{2}
\end{aligned}
$$

