Problems of chapter One

Properties of Fluids

Dr.Abdulkareem A.Wahab

Problem 1.1/

Calculate the mass density (ρ), specific weight (weight density γ), specific gravity (relative density S) of one liter of a liquid which weighs $7 \mathbf{N}$?

Solution :

$$
\begin{aligned}
& \text { One liter }=1000 \mathrm{~cm}^{3}=10^{3} \mathrm{~cm}^{3} \\
& \qquad \begin{array}{l}
1 \mathrm{~m}^{3}=10^{6} \mathrm{~cm}^{3} \\
\mathrm{w}=\mathrm{mg} \mathrm{~g} \quad \\
\text { One liter }=\frac{1 \times 10^{3}}{10^{6}}=10^{-3} \mathrm{~m}^{3} \\
\quad \text { (Newton second law }, \mathrm{F}=\mathrm{ma} \text {) } \\
\mathrm{m}=\frac{w}{g}=\frac{7}{9.8}=0.714 \mathrm{~kg} . \\
\rho=\frac{m}{v}=\frac{0.714}{10^{-3}}=714 \mathrm{~kg} / \mathrm{m}^{3} \quad(\text { mass density) } \\
\gamma=\frac{w}{v}=\frac{7}{10^{-3}}=7000 \mathrm{~N} / \mathrm{m}^{3} \text { (specific weight or weight }
\end{array}
\end{aligned}
$$

$S_{1}=\frac{\rho_{l}}{\rho_{w}}=\frac{714}{1000}=0.714 \quad$ (specific gravity or relative density)

Problem 1.2/

Calculate the mass density, specific weight and weight of one liter of petrol of specific gravity 0.7 ?

Solution:

One liter $=10^{-3} \mathrm{~m}^{3}$
$\mathrm{S}_{\mathrm{L}}=\frac{\rho_{l}}{\rho_{w}}$
$\rho_{\mathrm{L}}=\mathrm{S}_{\mathrm{L}} \rho_{\mathrm{w}}=0.7 \times 1000=700 \mathrm{~kg} / \mathrm{m}^{\mathbf{3}}($ mass density $)$

$$
\gamma_{L}=\rho_{1} g=700 \times 9.8=6860 \mathrm{~N} / \mathrm{m}^{3} \quad(\text { specific weight })
$$

$$
\begin{aligned}
& \gamma=\frac{w}{v} \\
& \mathrm{w}=\gamma \quad \mathrm{v}=6860 \times 10^{-3}=6.86 \mathrm{~N}
\end{aligned}
$$

Problem 1.3/

A distance between the moving plate and fixed plate is 0.025 mm , the velocity of moving plate is $60 \mathrm{~cm} / \mathrm{s}$, requires a force of $2 \mathrm{~N} / \mathrm{m}^{2}$ (shear stress). Determine the fluid viscosity between the plates?

Solution :

Fig. 1.3
$\tau=\mu \frac{d u}{d y}$

$$
\begin{aligned}
& d u=\text { change of velocity }=u-0=60 \mathrm{~cm} / \mathrm{s}=0.6 \mathrm{~m} / \mathrm{s} \\
& d y=\text { change of distance }=0.025 \mathrm{~mm}=0.025 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

$\tau=2 \mathrm{~N} / \mathrm{m}^{2}$

$$
\begin{aligned}
\mu & =\frac{\tau}{\frac{d u}{d y}}=\frac{2 \times 10^{-3}}{0.6 / 0.025}=8.33 \times 10^{-5} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
& =8.33 \times 10^{-5} \times 10=8.33 \times 10^{-4} \quad \text { poise }
\end{aligned}
$$

Problems 1.4 /

A flat plate of area $1.5 \times 10^{6} \mathrm{~mm}^{2}$ is pulled with a speed of $0.4 \mathrm{~m} / \mathrm{s}$ relative to another plate located at a distance of 0.15 mm from it. Find the force and power required to maintain this speed, if the fluid separated them is having viscosity as 1 poise.

Solution :

$$
\begin{gathered}
\mathrm{A}=1.5 \times 10^{6} \mathrm{~mm}^{2}=1.5 \mathrm{~m}^{2} \\
\mu=1 \text { poise }=0.1 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
\tau=\mu \frac{d u}{d y}=0.1 \times \frac{0.4}{0.15 \times 10^{-3}}=266.66 \mathrm{~N} / \mathrm{m}^{2}
\end{gathered}
$$

$\boldsymbol{\tau}=\frac{\boldsymbol{F}}{\boldsymbol{A}}$

$$
\mathrm{F}=\tau \mathrm{A}=266.66 \times 1.5=400 \mathrm{~N}
$$

$P=F u \quad(P$ is power)

$$
P=400 \times 0.4=160 \text { watt }
$$

Problem 1.5/

Determine the intensity of shear stress of an oil having viscosity (μ) is $\mathbf{1}$ poise . The oil is used for lubricating the clearance between a shaft of diameter 10 cm and its journal bearing. The clearance is 1.5 mm and the shaft rotates at 150 rpm

Solution :

$$
\begin{aligned}
& \mu=1 \text { poise }=0.1 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
& \mathrm{D}=1.5 \mathrm{~cm}=0.1 \mathrm{~m}
\end{aligned}
$$

$\mathrm{u}=\frac{\pi D N}{60}=\frac{\pi \times 0.1 \times 150}{60}=0.785 \mathrm{~m} / \mathrm{s}$
$\tau=\mu \frac{d u}{d y}=0.1 \times \frac{0.785}{1.5 \times 10^{-3}}=52.33 \mathrm{~N} / \mathrm{m}^{2}$

Problem 1.6 /

Determine the dynamic viscosity of an oil, which is used for lubrication between a square plate of size $0.8 \mathrm{~m} \times 0.8 \mathrm{~m}$ and an inclined plane with angle of inclination 30° as shown in Fig.(1.4) . The weight of the plate is 300 N and it slides down the inclined plane with a uniform velocity of $0.3 \mathrm{~m} / \mathrm{s}$. The thickness of oil film is $1.5 \mathbf{~ m m}$.

Solution :

$\mathrm{A}=0.8 \times 0.8=0.64 \mathrm{~m}^{2}$
Thickness of oil film $=t=d y=1.5 \mathrm{~mm}=1.5 \times 10^{-3} \mathrm{~m}$
Component of weight W, along the plane $=W \operatorname{Sin} 30^{\circ}$

$$
=300 \times 0.5=150 \mathrm{~N}
$$

$$
\begin{aligned}
\tau=\frac{F}{A}=\frac{150}{0.64} & =234.37 \mathrm{~N} / \mathrm{m}^{2} \\
\tau & =\mu \frac{d u}{d y} \\
\mu & =\frac{\tau}{\frac{d u}{d y}}=\frac{234.37}{\frac{0.3}{1.5 \times 10^{-3}}}=1.17 \text { N.s } / \mathrm{m}^{2}=1.17 \times 10=11.7 \text { poise }
\end{aligned}
$$

Problem 1.7 /

Two horizontal plate are placed 1.25 cm apart , the space between them being filled with oil of viscosity $\mathbf{1 4}$ poises. Calculate the shear stress (τ) in oil , if The velocity of the upper plate is $2.5 \mathrm{~m} / \mathrm{s}$.

Solution :

$t=\mathrm{dy}=1.25 \mathrm{~cm}=0.0125 \mathrm{~m}$
$\mu=14$ poise $=1.4 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$
$\tau=\mu \frac{d u}{d y}=1.4 \times \frac{2.5}{0.0125}=280 \mathrm{~N} / \mathrm{m}^{2}$

Problem 1.8 /

The space between two square flat parallel plate is filled with oil . Each side of the plate is $\mathbf{6 0} \mathbf{~ c m}$. The thickness of the oil film is 12.5 mm . The upper plate, which moves at $2.5 \mathrm{~m} / \mathrm{s}$ are requires a force of 98.1 N to maintain the speed.Determine : (1) the dynamic viscosity of the oil in poise .
(2) the kinematic viscosity of the oil in stokes, if the specific gravity (\mathbf{S}) of the oil is $\mathbf{0 . 9 5}$.

Solution :

$$
\begin{aligned}
& \text { Area }(A)=0.6 \times 0.6=0.36 \mathrm{~m}^{2} \\
& \quad d y=12.5 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{du}=2.5 \mathrm{~m} / \mathrm{s} \\
& \qquad \begin{aligned}
\tau=\frac{F}{A}=\frac{98.1}{0.36}= & 272.5 \mathrm{~N} / \mathrm{m}^{2} \\
\tau & =\mu \frac{d u}{d y}
\end{aligned}
\end{aligned}
$$

(1) $\mu=\frac{\tau}{\frac{d u}{d y}}=\frac{272.5}{\frac{2.5}{12.5 \times 10^{-3}}}=1.36 \mathrm{~N} / \mathrm{m}^{2}=13.6$ poise
(2) $\rho_{\text {oil }}=0.95 \times 1000=950 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& v=\frac{\mu}{\rho}=\frac{1.36}{950}=0.00143 \mathrm{~m}^{2} / \mathrm{s} \\
& v= \\
& =0.00143 \times 10^{4} \mathrm{~cm}^{2} / \mathrm{s} \\
& \\
& =14.3 \mathrm{~cm}^{2} / \mathrm{s}=14.3 \text { stokes }
\end{aligned}
$$

Problem 1.9 /

Find the kinematic viscosity of an oil having density $981 \mathrm{~kg} / \mathrm{m}^{3}$. The shear stress a point in oil is $0.2452 \mathrm{~N} / \mathrm{m}^{2}$ and velocity gradient ($\mathrm{du} / \mathrm{dy}$) at the point is 0.2 per second.

Solution :

$\tau=\mu \frac{d u}{d y}$

$$
\begin{aligned}
& \mu=\frac{\tau}{\frac{d u}{d y}}=\frac{0.2452}{0.2}=1.226 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
& v=\frac{\mu}{\rho}=\frac{1.226}{981}=0.0012 \mathrm{~m}^{2} / \mathrm{s}=0.0012 \times 10^{4} \mathrm{~cm}^{2} / \mathrm{s}=12 \text { stokes } .
\end{aligned}
$$

Problem 1.10 /

Determine the specific gravity (S) of a fluid having a dynamic viscosity (μ) is 0.05 poise and kinematic viscosity 0.035 stokes?

Solution :

$$
\begin{aligned}
& \mu=0.05 \text { poise }=0.005 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
& \qquad v=0.035 \text { stokes }=0.035 \mathrm{~cm}^{2} / \mathrm{s}=0.035 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s} \\
& v=\frac{\mu}{\rho} \quad, \quad \rho_{\mathrm{f}}=\frac{\mu}{v}=\frac{0.005}{0.035 \times 10^{-4}}=1428.5 \mathrm{~kg} / \mathrm{m}^{3} \\
& S_{\mathrm{f}}=\frac{\rho_{f}}{\rho_{w}}=\frac{1428.5}{1000}=1.4285
\end{aligned}
$$

Problem 1.11/

Determine the viscosity of a liquid having kinematic viscosity 6 stokes and specific gravity $\mathbf{1 . 9}$?

Solution :

$$
\begin{aligned}
& v=6 \text { stokes }=6 \mathrm{~cm}^{2} / \mathrm{s}=6 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s} \\
& \begin{aligned}
& \mathrm{S}_{\mathrm{f}}=\frac{\rho_{f}}{\rho_{w}} \quad, \quad \rho_{\mathrm{f}}=\mathrm{S}_{\mathrm{f}} \times \rho_{\mathrm{w}}=1.9 \times 1000=1900 \mathrm{~kg} / \mathrm{m}^{3} \\
& v=\frac{\mu}{\rho_{f}} \quad, \mu=v \times \rho_{\mathrm{f}}=6 \times 10^{-4} \times 199=1.14 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
&=11.4 \text { poise }
\end{aligned}
\end{aligned}
$$

Problem 1.12 /

The velocity distribution for flow over a flat plate is given by equation : $u=\frac{3}{4} y$
$-y^{2}$ in which u is the velocity in m / s at a distance (y) mabove the plate.

Determine the shear stress at $\mathbf{y}=\mathbf{0 . 1 5} \mathbf{m}$. Take dynamic viscosity of fluid as $\mathbf{0 . 8 5}$ poise .

Solution :

$\mathbf{u}=\frac{3}{4} \mathrm{y}-\mathrm{y}^{2}, \quad \frac{d u}{d y}=\frac{3}{4}-2 \mathrm{y}$

$$
\begin{aligned}
& \text { At } \mathrm{y}=0.15 \mathrm{~m}, \quad \frac{d u}{d y}=\frac{3}{4}-2 \times 0.15=0.45 \\
& \text { If } \mu=8.5 \text { poise }=0.85 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
& \tau=\mu \frac{d u}{d y}=0.85 \times 0.45=0.3825 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Problem 1.13/

The dynamic viscosity of an oil , used for lubrication between a shaft and sleeve is 6 poise. The shaft is of diameter 0.4 m and rotates at 190 rpm . Calculate the power lost in a bearing for a sleeve length of $\mathbf{9 0} \mathbf{~ m m}$. The thickness of the oil film is 1.5 mm .

Solution:

$\mu=6$ poise $=0.6 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$
$\mathrm{u}=\mathrm{r} \omega=\frac{D}{2} \times \frac{2 \pi N}{60}=\frac{\pi D N}{60}=\frac{\pi \times 0.4 \times 190}{60}=3.98 \mathrm{~m} / \mathrm{s}$
$\tau=\mu \frac{d u}{d y}=0.6 \frac{3.98}{1.5 \times 10^{-3}}=1592 \mathrm{~N} / \mathrm{m}^{2}$
$\tau=\frac{F}{A} \quad$ (A is surface area)
$\mathrm{F}=\boldsymbol{\tau} \mathrm{A}=\boldsymbol{\tau} \times \boldsymbol{\pi} \mathrm{DL}=1592 \times \pi \times 0.4 \times 90 \times 10^{-3}=180.05 \mathrm{~N}$
$T=F \times \frac{D}{2} \quad(T$ is Torque $N . m$)
$=180.05 \times \frac{0.4}{2}=36.01 \mathrm{~N} . \mathrm{m}$

Power $($ lost $)=\mathrm{T} \omega=36.01 \times \frac{2 \pi N}{60}=71648$ watt.

Problem 1.14 /

A 15 cm diameter vertical cylinder rotates concentrically inside another cylinder of diameter 15.10 cm . Both cylinders are 25 cm high . The space between the cylinders is filled with liquid whose viscosity is unknown. If a torque of 12 N.m is required to rotate the inner cylinder at 100 rpm., determine the viscosity of the fluid?

Solution :

$\mathrm{u}=\mathrm{r} \omega=\frac{D}{2} \times \frac{2 \pi N}{60}=\frac{\pi D N}{60}=\frac{\pi \times 0.15 \times 100}{60}=0.7854 \mathrm{~m} / \mathrm{s}$
Surface $\operatorname{area}(A)=\pi D L=\pi \times 0.15 \times 0.25=0.1178 \mathrm{~m}^{2}$

$$
\mathrm{dy}=\frac{D_{\text {outer }}-D_{\text {inner }}}{2}=\frac{0.151-0.15}{2}=0.0005 \mathrm{~m}
$$

$$
\begin{equation*}
\tau=\mu \frac{d u}{d y}=\frac{\mu \times 0.7854}{0.0005} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \tau=\frac{F}{A} \quad, \quad \mathrm{~F}=\tau \times \mathrm{A}=\frac{\mu \times 0.7854 \times 0.1178}{0.0005} \tag{2}\\
& \mathrm{~T}=\mathrm{F} \times \frac{D}{2} \\
& 12=\frac{\mu \times 0.7854 \times 0.1178}{0.0005} \times \frac{0.15}{2} \\
& \mu=0.864 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}=8.64 \text { poise } .
\end{align*}
$$

Problem 1.15 /

The weight density of gas is $16 \mathrm{~N} / \mathrm{m}^{\mathbf{3}}$ at $25^{\circ} \mathrm{c}$ and at an absolute pressure of 0.25
$\mathrm{N} / \mathrm{mm}^{2}$. Determine the mass density of gas and gas constant ?

Solution:

$$
\mathrm{T}_{\text {abs. }}=25+273=298^{\circ} \mathrm{K}
$$

$$
\begin{aligned}
& \mathrm{P}=0.25 \times 10^{6}=25 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \\
& \gamma=\rho \mathrm{g} \\
& \rho=\frac{\gamma}{g}=\frac{16}{9.81}=1.63 \mathrm{~kg} / \mathrm{m}^{3}, \frac{p}{\rho}=\mathrm{R} \mathrm{~T}, \mathrm{R}=\frac{\mathrm{p}}{\rho T}=\frac{25 \times 10^{4}}{1.63 \times 298} \\
& =532.5 \mathrm{~N} . \mathrm{m} / \mathrm{kg} . \mathrm{k}
\end{aligned}
$$

Problem 1.16/

A cylinder of $0.6 \mathrm{~m}^{3}$ in volume contains air at $50^{\circ} \mathrm{c}$ and $0.3 \mathrm{~N} / \mathrm{mm}^{2}$ absolute pressure. The air is compressed to $0.3 \mathrm{~m}^{3}$. Find (1) pressure inside the cylinder, assuming isothermal process and (2) pressure and temperature, assuming adiabatic process.(Take 1.4).

Solution :

$$
\begin{gathered}
\mathrm{V}_{1}=0.6 \mathrm{~m}^{3}, \mathrm{~T}_{1}=50+273=323^{0} \mathrm{k}, \mathrm{P}_{1}=30 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \\
\mathrm{~V}_{2}=0.3 \mathrm{~m}^{3}, \mathrm{k}=1.4
\end{gathered}
$$

(1) Isothermal process:

$$
\begin{aligned}
& \frac{P}{\rho}=\text { constant }, \text { or } P \mathrm{P}=\text { constant } \\
& \qquad P_{1} V_{1}=P_{2} V_{2}, P_{2}=\frac{p_{1 V_{1}}}{V_{2}}=\frac{30 \times 10^{4} \times 0.6}{0.3}=0.6 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

(2) Adiabatic process :

$$
\begin{aligned}
& \frac{P}{\rho^{k}}=\text { constant or } \mathbf{P} \mathbf{V}^{k}=\text { constant } \\
& \mathbf{P}_{1} V_{1}^{k}=\mathbf{P}_{2} V_{2}^{k}
\end{aligned}
$$

$$
\begin{aligned}
P_{2}=P_{1} \frac{V_{1}^{k}}{V_{2}^{k}} & =30 \times 10^{4} \times\left(\frac{0.6}{0.3}\right)^{1,4}=30 \times 10^{4} \times 2^{1.4} \\
& =0.791 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}=0.791 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

$$
\frac{R T}{V} \times \mathbf{V}^{\mathrm{k}}=\mathrm{constant} \quad, \quad \mathbf{R} \mathrm{~T}^{\mathrm{k}-1}=\text { constant }
$$

$$
T \mathbf{V}^{k-1}=\text { constant } \quad(\mathbf{R} \text { is constant })
$$

$$
\mathrm{T}_{1} V_{1}^{k-1}=\mathrm{T}_{2} V_{2}^{k-1} \quad, \quad \mathrm{~T}_{2}=\mathrm{T}_{1}\left(\frac{V_{1}}{V_{2}}\right)^{1.4-1}
$$

$$
\begin{array}{r}
\mathrm{T}_{2}=323\left(\frac{0.6}{0.3}\right)^{0.4}=323 \times 10^{0.4}=426.2^{0} \mathrm{k} \\
\mathrm{~T}_{2}=426.2-273=153.2^{\circ} \mathrm{c}
\end{array}
$$

Problem 1.17 /

Determine the Bulk modulus of elasticity of a liquid. If the pressure of the liquid increased from $70 \mathrm{~N} / \mathrm{cm}^{2}$ to $130 \mathrm{~N} / \mathrm{cm}^{2}$. The volume of the liquid decreases by 0.15 per cent (15%) .

Solution :

Increase of pressure $(d P)=130-70=60 \mathrm{~N} / \mathrm{cm}^{2}$
Decrease of Volume ($\mathbf{d V}$) $=\mathbf{1 5} \%$
$\mathrm{K}=\frac{d p}{\frac{d V}{V}}=\frac{60}{\frac{15}{100}}=4 \times 10^{4} \mathrm{~N} / \mathrm{cm}^{2}$

Problem 1.18 /

What is the Bulk modulus of elasticity of a liquid which is compressed in a cylinder from a volume of $0.0125 \mathrm{~m}^{3}$ at $80 \mathrm{~N} / \mathrm{cm}^{2}$ pressure to a volume of 0.0124 m^{3} at $150 \mathrm{~N} / \mathrm{cm}^{2}$ pressure.

Solution:

$$
\mathrm{d} V=0.0125-0.0124=0.0001 \mathrm{~m}^{3}
$$

$\mathrm{d} P=150-80=70 \mathrm{~N} / \mathrm{cm}^{2}$

$$
\mathrm{K}=\frac{d P}{\frac{-d V}{V}}=\frac{70}{\frac{0.0001}{0.0125}}=70 \times 125 \mathrm{~N} / \mathrm{cm}^{2}
$$

Problem 1.19 /

A surface tension of water in contact with air at $20^{\circ} \mathrm{c}$ is $0.0725 \mathrm{~N} / \mathrm{m}$. The pressure inside a droplet of water is to be $0.02 \mathrm{~N} / \mathrm{cm}^{2}$ greater than the outside pressure. Calculate the diameter of the droplet of water .

Solution :

$$
\begin{aligned}
P=0.02 & \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \\
& P=\frac{4 \sigma}{d}, d=\frac{4 \sigma}{P}=\frac{4 \times 0.0725}{0.02 \times 10^{4}}=0.00145 \mathrm{~m}=1.45 \mathrm{~mm} .
\end{aligned}
$$

Problem 1.20 /

Find the surface tension in a soap bubble of a 40 mm diameter, when the inside pressure is $2.5 \mathrm{~N} / \mathrm{m}^{2}$ above atmospheric pressure .

Solution :

$$
P=\frac{8 \sigma}{d} \quad, \quad \sigma=\frac{P d}{8}=\frac{2.5 \times 40 \times 10^{-3}}{8}=0.0125 \mathrm{~N} / \mathrm{m}
$$

Problem 1.21/

The pressure outside the droplet of water of diameter 0.04 mm is $10.32 \mathrm{~N} / \mathrm{cm}^{2}$ (atmospheric pressure). Calculate the pressure within the droplet , if surface tension is given as $0.0725 \mathrm{~N} / \mathrm{m}$ of water .

Solution :

$$
\begin{aligned}
P_{\text {inside }}= & \frac{4 \sigma}{d}=\frac{4 \times 0.0725}{0.04 \times 10^{-3}}=7250 \mathrm{~N} / \mathrm{m}^{2}=0.725 \mathrm{~N} / \mathrm{cm}^{2} \\
& P_{\text {outside }}=P_{\text {inside }}+P_{\text {atm. }}=0.725+10.32=11.045 \mathrm{~N} / \mathrm{cm}^{2}
\end{aligned}
$$

Problem 1.22 /

Calculate the capillary effect in millimeter in a glass tube of $4 \mathbf{~ m m}$ diameter, when immersed in (1) water, and (2) mercury. The values of the surface tension of water and mercury are $0.073575 \mathrm{~N} / \mathrm{m}$ and $0.51 \mathrm{~N} / \mathrm{m}$ respectively. The angle of contact for mercury 1.30°.

Solution :

$$
\mathrm{h}=\frac{4 \sigma \cos \theta}{\rho g d}
$$

(1) For water rise, $\quad h=\frac{4 \times 0.073575}{1000 \times 9.81 \times 4 \times 10^{-3}} \quad(\theta$ is zero $)$
$h=7.51 \times 10^{-3} \mathrm{~m}=7.51 \mathrm{~mm}$
(2) For mercury depression, $h=\frac{-4 \times 0.51 \times \cos 1.30^{\circ}}{13600 \times 9.81 \times 4 \times 10^{-3}}$
$h=-2.46 \times 10^{-3} \mathrm{~m}=-\mathbf{2 . 4 6} \mathrm{mm}$

Problem 1.23 /

Find the diameter of glass tube (capillary tube) that can be used to measure surface tension of water in contact with air as $0.073575 \mathrm{~N} / \mathrm{m}$.

Solution :

$$
\begin{array}{r}
\mathrm{h}=\frac{4 \sigma}{\rho g d} \quad, \quad \mathrm{~d}=\frac{4 \sigma}{\rho g h}=\frac{4 \times 0.073575}{1000 \times 9.81} \times 2 \times 10^{-3} \\
\\
=0.015 \mathrm{~m}=1.5 \mathrm{~cm} .
\end{array}
$$

Problem 1.24 /

An oil of viscosity 5 poise is used for lubrication between a shaft and sleeve. The diameter of the shaft is 0.5 m and it rotates at 200 rpm . Calculate the power lost in oil for a sleeve length of $\mathbf{1 0 0} \mathbf{~ m m}$. The thickness of oil film is $\mathbf{1 \mathbf { m m }}$.

Solution :

$$
\begin{aligned}
& \mathrm{u}=\mathrm{r} \omega=\frac{D}{2} \times \frac{2 \pi N}{60}=\frac{\pi D N}{60}=\frac{\pi \times 0.5 \times 200}{60}=5.235 \mathrm{rad} / \mathrm{s} \\
& \\
& \quad \begin{array}{r}
\tau=5 \times 0.1=0.5 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}
\end{array} \\
& \begin{array}{r}
\tau=\frac{d u}{d y}=\frac{0.5 \times 5.235}{1 \times 10^{-3}}=2617.5 \mathrm{~N} / \mathrm{m}^{2} \\
\tau=\tau \mathrm{A}=\tau . \pi \mathrm{D} \mathrm{~L}=2617.5 \times \pi \times 0.5 \times 1 \times 10^{-3} \\
=410.95 \mathrm{~N}
\end{array}
\end{aligned}
$$

Torque (T) = F $\cdot \frac{D}{2}=410.95 \times \frac{0.5}{2}=102.74 \mathrm{~N} . \mathrm{m}$
Power (lost $)=$ Torque $\cdot \omega=102.74 \times \frac{2 \pi N}{60}$

$$
=2150 \text { watt }=2.15 \mathrm{kw}
$$

