
14. Arithmetic and Logical Operations on Images (Image Algebra)

These operations are applied on pixel-by-pixel basis. So, to add two

images together, we add the value at pixel (0 , 0) in image 1 to the value at

pixel (0 , 0) in image 2 and store the result in a new image at pixel (0 , 0). Then

we move to the next pixel and repeat the process, continuing until all pixels

have been visited.

Clearly, this can work properly only if the two images have identical

dimensions. If they do not, then combination is still possible, but a meaningful

result can be obtained only in the area of overlap. If our images have

dimensions of w1*h1, and w2*h2 and we assume that their origins are aligned,

then the new image will have dimensions w*h, where:

w = min (w1, w2)

h = min (h1, h2)

Addition and Averaging

If we add two 8-bit gray scale images, then pixels in the resulting image

can have values in the range 0-510. We should therefore choose a 16-bit

representation for the output image or divide every pixel value by two. If we

do the later, then we are computing an average of the two images.

The main application of image averaging is noise removal. Every image

acquired by a real sensor is afflicted to some degree of random noise.

However, the level of noise is represented in the image can be reduced,

provided that the scene is static and unchanging, by the averaging of multiple

observations of that scene. This works because the noisy distribution can be

regarded as approximately symmetrical with a mean of zero. As a result,

 as likely as

negative perturbations by the same amount, and there will be a tendency for the

perturbations to cancel out when several noisy values are added.

Addition can also be used to combine the information of two images,

such as an image morphing, in motion pictures.

Algorithm 1: image addition

read input-image1 into in-array1;

read input-image2 into in- array2;

for i = 1 to no-of-rows do

 for j=1 to no-of-columns do begin

out-array (i,j) = in-array1(i,j) + in-array2(i,j);

if (out-array (i,j) > 255) then out-array (i,j) = 255;

end

write out-array to out-image;

a b c

Figure (4) a) noisy image b) average of five observation c) average of ten

observation

Subtraction

Subtracting two 8-bit grayscale images can produce values between - 225

and +225. This necessitates the use of 16-bit signed integers in the output

image unless sign is unimportant, in which case we can simply take the

modulus of the result and store it using 8-bit integers:

g(x,y) = |f1 (x,y) f2 (x,y)|

The main application for image subtraction is in change detection (or motion

detection). If we make two observations of a scene and compute their difference

using the above equation, then changes will be indicated by pixels in the difference

image which have non-zero values. Sensor noise, slight changes in illumination and

various other factors can result in small differences which are of no significance so it

is usual to apply a threshold to the difference image. Differences below this threshold

are set to zero. Difference above the threshold can, if desired, be set to the maximum

pixel value. Subtraction can also be used in medical imaging to remove static

background information.

Algorithm2: image subtraction

read input-image1 into in-array1;

read input-image2 into in- array2;

for i = 1 to no-of-rows do

for j=1 to no-of-columns do

begin

out-array (i,j) = in-array1(i,j) - in-array2(i,j);

if (out-array (i,j) < 0) then out-array (i,j) = 0; end

write out-array to out-image;

Figure (5) a, b) two frames of video sequence c) their difference

Multiplication and Division

Multiplication and division can be used to adjust brightness of an image.

Multiplication of pixel values by a number greater than one will brighten the

image, and division by a factor greater than one will darken the image.

Brightness adjustment is often used as a preprocessing step in image

enhancement.

One of the principle uses of image multiplication (or division) is to correct

grey-level shading resulting from non uniformities in illumination orin the

sensor used to acquire the image.

(a) (b) (c)

Figure a) original image b) image multiplied by 2 c) image divided by 2

15. Logical Operation:

Logical operations apply only to binary images, whereas arithmetic

operations apply to multi-valued pixels. Logical operations are basic tools in

binary image processing, where they are used for tasks such as masking,

feature detection, and shape analysis. Logical operations on entire image are

performed pixel by pixel. Because the AND operation of two binary

variables is 1 only when both variables are 1, the result at any location in a

resulting AND image is 1 only if the corresponding pixels in the two input

images are 1. As logical operation involve only one pixel location at a time,

they can be done in place, as in the case of arithmetic operations. The XOR

(exclusive OR) operation yields a 1 when one or other pixel (but not both) is 1,

and it yields a 0 otherwise. The operation is unlike the OR operation, which is

1, when one or the other pixel is 1, or both pixels are 1.

Logical AND & OR operations are useful for the masking and

compositing of images. For example, if we compute the AND of a binaryimage

with some other image, then pixels for which the corresponding value in the

binary image is 1 will be preserved, but pixels for which the corresponding

binary value is 0 will be set to 0 (erased) . Thus the binary image acts as a

mask removes information from certain parts of the image.

On the other hand, if we compute the OR of a binary image with some

other image , the pixels for which the corresponding value in the binary image

is 0 will be preserved, but pixels for which the corresponding binary value is 1,

will be set to 1 (cleared).

So, masking is a simple method to extract a region of interest from an

image.

Figure: image masking

In addition to masking, logical operation can be used in feature detection.

Logical operation can be used to compare between two images, as shown

below:

AND^

This operation can be used to find the similarity white regions of two

different images (it required two images).

g (x,y) = a (x,y) ^ b (x,y)

Exclusive OR

This operator can be used to find the differences between white regions of two

different images (it requires two images).

NOT

NOT operation can be performed on gray-

only one image, and the result of this operation is the negative of the

original image.

g (x,y) = 255- f (x,y)

Figure a) input image a(x,y); b) input image b(x,y) ; c) a(x,y) ^ b(x,y) ;

d) a(x,y) ^ ~ b(x,y)

