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Figure 1 

 

1. Double integral 

The definite integral can be extended to 

functions of more than one variable. Consider, 

for example, a function of two variables z = f (x, 

y). The double integral of function f (x, y) is 

denoted by 

∬   (   )  

 

 

 

 

Where R is the region of integration in the xy-plane. 

 

The definite integral ∫  ( )  
 

 
 of a function of one variable f(x) ≥ 0 is the area under the 

curve f(x) from x=a to x=b, then the double integral is equal to the volume under the surface 

z=f (x, y) and above the xy-plane in the region of integration R (Figure 1). 

 

a- Properties of double integral 
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b- Cartesian form 

 

Double integral of  (   ) over the region R is denoted by:  
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Fig.2a 

Fig.2b 



  
 

 

 
4 

 

  

 

(a)                                                                              (b) 

Figure 2 

c- Finding Limits of Integration in cartesian form 
 

 Using Vertical Cross-Sections 

When faced with evaluating ∬  (   )   
 

 
, integrating first with respect to y and then 

with respect to x, do the following three steps: 

1- Sketch. Sketch the region of integration and label the bounding curves. (Figure 3 a). 

2- Find the y-limits of integration. Imagine a vertical line L cutting through R in the 

direction of increasing y. Mark the y-values where L enters and leaves. These are the 

y-limits of integration and are usually functions of x (instead of constants) (Figure 3 

b). 

3- Find the x-limits of integration. Choose x-limits that include all the vertical lines 

through R. The integral shown here (see Figure 3 c) is 
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 Using Horizontal Cross-Sections 

To evaluate the same double integral as an iterated integral with the order of integration 

reversed, use horizontal lines instead of vertical lines in Steps 2 and 3 (see Figure 4). The 

integral is 

 

 

 

Figure 4 
 

d- Polar form 
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Figure 5 

(a)     (b)     (c) 

Figure 3 
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e- Finding Limits of Integration in polar form 

The procedure for finding limits of integration in rectangular coordinates also works for 

polar coordinates. To evaluate                             over a region R in polar coordinates, 

integrating first with respect to r and then with respect to  , take the following steps. 

1- Sketch. Sketch the region and label the bounding curves. 

2- Find the r-limits of integration. Imagine a ray L from the origin cutting through R in 

the direction of increasing r. Mark the r-values where L enters and leaves R. These 

are the r-limits of integration. They usually depend on the angle u that L makes with 

the positive x-axis. 

3- Find the  -limits of integration. Find the smallest and largest  -values that bound R. 

These are the  -limits of integration (see figure 6). The polar iterated integral is 

 

Figure 6 

 

f- Change of variables  
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Let      (   )      (   ) then the formula for a change of variables in double 

integrals from x, y to u, v is 

∬  
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 (  (   )    (   )) |
 (   )

 (   )
|      

that is, the integrand is expressed in terms of u and v, and dx, dy is replaced by du dv 

times 

the absolute value of the Jacobian. 
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For double integral transformation from the cartesian coordinates to polar coordinates 

ordinates as follows: 

Since                          

using the Jacobian matrix, we find that  
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|   ((    )  (    ) )    

Then  
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g- Triple integral 

If f (x, y, z) is a function defined on a closed bounded region D in space, such as the 

region occupied by a solid ball or a lump of clay, then the integral of f over D may be 

defined in the following way.  
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  ∭   ∫ ∫ ∫  (     )         
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h- Surface area  

Let f (x, y) be a differentiable function. As we have seen, z=f(x, y) defines a surface in x 

y z-space. In some applications, it necessary to know the surface area of the surface above 

some region R in the xy-plane. See the figure.  
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Z = (x, y) 

Figure 7 

https://math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/multvar/multvar.html#surface
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Examples 

1. Double integral 

a- Cartesian form 

1- Find the limits of the following integral  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                  (b) 

(c)                                                                 (d) 

(e) 
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(a)                                                            (b)                                      

 

 

 

 (e)  

                

 

 

(f)                                                                    (g)  

                                        

   

          

2- Evaluate the following    

  

     a-                                        b-     

   

c-                                                    d-  

 

e-                                                bounded by the area in fig.8  

 

f-                              bounded by the area in fig.9 

 

g-                                    bounded by the area in fig.10 

 

h-                    bounded by the area in fig.11 

    

          i-                       bounded by the area in fig.12 

  

∫ ∫(  8  ) d  d 
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Figure 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 

Figure 11 Figure 10 

R 

R 
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Figure 12 

Solution 
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b-  
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b- Poalr form 

1- Find the limits of the following integral  

 

 

 

 

 

 

 

a-                                                    b-  

 

2- Evaluate the following  

a-                                                        b-  

n 

 c-                                                 d-  

f 

 e-                                  bounded by area shown in fig.13 

v 

     f-                                  bounded by area shown in fig.14  

 

g-                            bounded by area shown in fig.15 ∬𝒅𝑨
 

𝑨

 

(a)                                                                     (b) 
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Figure 15 

Solution  

a-  

  

 

b-  

 

c-  

 

 

Figure 13 Figure 14 
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d-  

 

 

e-  

 

 

 

 

 

 

  

f-  

 

 

 

 

 

 

g-  

 

 

 

c- Change of variables  

Evaluate the following integrals in polar form 

 

a-                                                   

 

b-                                   
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c-   

 

 

d-                                                          

      

 

e-    

 

 

f-                                           where s is the area bounded in fig.16   

 

 

g-                                         where T is the area bounded in fig.17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Figure 16 
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Solution  
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d- Triple integral  

Evaluate the following integrals: 

a-                                                                           b-    

 

c-                                                                            d-  

 

e-  

 

Solution 
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d-  

 

 

 

e-  

 

 

 

 

e- Surface area  

Find the area of the following surfaces: 

a-    (   )                 lies in the region shown in fig. 18 

b-                  lies in the region shown in fig. 19                   

 

 

 

 

 

 

 

 

 

Solution  

a-           

  

  
              

  

  
                                       

 

 
     

Figure 18 
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Figure 19 

𝑥  𝑦  9 
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