

Ministry of Higher Education and Scientific Research Al-Mustaqbal University College
Department of Technical Computer Engineering

Week: 5 and 6

Mathematics II

$$
2^{\text {nd }} \text { Stage }
$$

Lecturer: Dr. Sarah alameedee

2019-2020

1. Double integral

The definite integral can be extended to functions of more than one variable. Consider, for example, a function of two variables $\mathrm{z}=\mathrm{f}(\mathrm{x}$, $y)$. The double integral of function $f(x, y)$ is denoted by

$$
\iint_{R} F(x, y) d A
$$

Figure 1

Where R is the region of integration in the xy-plane.

The definite integral $\int_{a}^{b} f(x) d x$ of a function of one variable $\mathrm{f}(\mathrm{x}) \geq 0$ is the area under the curve $f(x)$ from $x=a$ to $x=b$, then the double integral is equal to the volume under the surface $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ and above the xy -plane in the region of integration R (Figure 1).

a- Properties of double integral

If $f(x, y)$ and $g(x, y)$ are continuous on the bounded region R, then the following properties hold.

1. Constant Multiple: $\iint_{R} c f(x, y) d A=c \iint_{R} f(x, y) d A \quad$ (any number c)
2. Sum and Difference:

$$
\iint_{R}(f(x, y) \pm g(x, y)) d A=\iint_{R} f(x, y) d A \pm \iint_{R} g(x, y) d A
$$

3. Domination:
(a) $\iint_{R} f(x, y) d A \geq 0 \quad$ if $\quad f(x, y) \geq 0$ on R
(b) $\iint_{R} f(x, y) d A \geq \iint_{R} g(x, y) d A \quad$ if $\quad f(x, y) \geq g(x, y)$ on R
4. Additivity: $\iint_{R} f(x, y) d A=\iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A$
if R is the union of two nonoverlapping regions R_{1} and R_{2}

b- Cartesian form

Double integral of $f(x, y)$ over the region R is denoted by:

$$
\begin{gather*}
\iint_{R} F(x, y) d A=\iint_{R} F(x, y) d x d y=\int_{c}^{d} \int_{x 1}^{x 2} F(x, y) d x d y \\
\iint_{R} F(x, y) d A=\iint_{R} F(x, y) d y d x=\int_{a}^{b} \int_{y 1}^{y 2} F(x, y) d y d x
\end{gather*}
$$

Fig.2b

(a)

Figure 2

c- Finding Limits of Integration in cartesian form

- Using Vertical Cross-Sections

When faced with evaluating $\iint_{R} f(x, y) d A$, integrating first with respect to y and then with respect to x, do the following three steps:

1- Sketch. Sketch the region of integration and label the bounding curves. (Figure 3 a).
2- Find the y-limits of integration. Imagine a vertical line L cutting through R in the direction of increasing y. Mark the y-values where Lenters and leaves. These are the y-limits of integration and are usually functions of x (instead of constants) (Figure 3 b).

3- Find the x -limits of integration. Choose x -limits that include all the vertical lines through R. The integral shown here (see Figure 3 c) is

$$
\iint_{R} f(x, y) d A=\int_{x=0}^{x=1} \int_{y=1-x}^{y=\sqrt{1-x^{2}}} f(x, y) d y d x
$$

(a)
(b)
(c)

Figure 3

- Using Horizontal Cross-Sections

To evaluate the same double integral as an iterated integral with the order of integration reversed, use horizontal lines instead of vertical lines in Steps 2 and 3 (see Figure 4). The integral is

$$
\iint_{R} f(x, y) d A=\int_{0}^{1} \int_{1-y}^{\sqrt{1-y^{2}}} f(x, y) d x d y
$$

Figure 4

d- Polar form

$$
\begin{gathered}
\iint_{R} F(r, \theta) d A=\int_{r_{1}}^{r_{2}} \int_{\theta_{1}=g_{1}(r)}^{\theta_{2}=g_{2}(r)} F(r, \theta) r d \theta d r \\
\text { or } \\
\iint_{R} F(r, \theta) d A=\int_{\theta_{1}}^{\theta_{2}} \int_{r_{1}=g_{1}(\theta)}^{r_{2}=g_{2}(\theta)} F(r, \theta) r d r d \theta
\end{gathered}
$$

Figure 5

e- Finding Limits of Integration in polar form

The procedure for finding limits of integration in rectangular coordinates also works for polar coordinates. To evaluate $\iint_{R} f(r, \theta) d A$ over a region R in polar coordinates, integrating first with respect to r and then with respect to θ, take the following steps.

1- Sketch. Sketch the region and label the bounding curves.
2- Find the r-limits of integration. Imagine a ray L from the origin cutting through R in the direction of increasing r. Mark the r-values where L enters and leaves R. These are the r-limits of integration. They usually depend on the angle u that L makes with the positive x-axis.

3- Find the θ-limits of integration. Find the smallest and largest θ-values that bound R. These are the θ-limits of integration (see figure 6). The polar iterated integral is

$$
\iint_{R} f(r, \theta) d A=\int_{\theta=\pi / 4}^{\theta=\pi / 2} \int_{r=\sqrt{2} \csc \theta}^{r=2} f(r, \theta) r d r d \theta
$$

$$
\int_{-\pi / 2}^{\pi / 2} \int_{1}^{1+\cos \theta} f(r, \theta) r d r d \theta
$$

Figure 6

f- Change of variables

Let $x=x(u, v), y=y(u, v)$ then the formula for a change of variables in double integrals from x, y to u, v is

$$
\iint_{R} F(x, y) d y d x=\iint_{R^{\prime}} F(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

that is, the integrand is expressed in terms of u and v, and $d x$, dy is replaced by $d u d v$ times
the absolute value of the Jacobian.

$$
j=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
$$

For double integral transformation from the cartesian coordinates to polar coordinates ordinates as follows:

$$
\text { Since } \quad x=r \cos \theta \quad, y=r \sin \theta
$$

using the Jacobian matrix, we find that

$$
j=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r\left((\cos \theta)^{2}+(\sin \theta)^{2}\right)=r
$$

Then

$$
\int_{x 1}^{x 2} \int_{y 1}^{y 2} F(x, y) d y d x=\int_{r 1}^{r 2} \int_{\theta 1}^{\theta 2} F(r, \theta) r d r d \theta
$$

g- Triple integral

If $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is a function defined on a closed bounded region D in space, such as the region occupied by a solid ball or a lump of clay, then the integral of f over D may be defined in the following way.

$$
V=\iiint_{D} d V=\int_{x=a}^{x=b} \int_{y=g_{1}(x)} \int_{z=f_{1}(x, y)}^{y=g_{2}(x)} F(x, y, z) d z d y d x
$$

h- Surface area

Let $\mathrm{f}(\mathrm{x}, \mathrm{y})$ be a differentiable function. As we have seen, $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ defines a surface in x $y \mathrm{z}$-space. In some applications, it necessary to know the surface area of the surface above some region R in the xy -plane. See the figure.

$$
S=\iint_{R} \sqrt{1+\left(\frac{\partial \mathrm{f}}{\partial \mathrm{x}}\right)^{2}+\left(\frac{\partial \mathrm{f}}{\partial \mathrm{y}}\right)^{2}} d y d x
$$

Figure 7

Examples

1. Double integral

a- Cartesian form

1- Find the limits of the following integral

(a) $\int_{0}^{9} \int_{0}^{\sqrt{x}} d y d x$
(b) $\int_{0}^{\pi / 4} \int_{\tan x}^{1} d y d x$
$\int_{0}^{3} \int_{y^{2}}^{9} d x d y$ $\int_{0}^{1} \int_{0}^{\tan ^{-1} y} d x d y$
(e) $\int_{0}^{1} \int_{x}^{3-2 x} d y d x$

$$
\int_{0}^{1} \int_{0}^{y} d x d y+\int_{1}^{3} \int_{0}^{(3-y) / 2} d x d y
$$

(f) $\int_{0}^{1} \int_{0}^{1} d y d x+\int_{1}^{e} \int_{\ln x}^{1} d y d x$
(g) $\int_{-1}^{2} \int_{x^{2}}^{x+2} d y d x$
$\int_{0}^{1} \int_{0}^{\mathrm{e}^{\mathrm{y}}} \mathrm{dx} \mathrm{dy}$

$$
\int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} d x d y+\int_{1}^{4} \int_{y-2}^{\sqrt{y}} d x d y
$$

2- Evaluate the following
$a-\int_{0}^{3} \int_{1}^{2}(1+8 x y) d y d x \quad b-\int_{0}^{1} \int_{0}^{1}\left(1-\frac{x^{2}+y^{2}}{2}\right) d x d y$
c- $\int_{0}^{3} \int_{-2}^{0}\left(x^{2} y-2 x y\right) d y d x \quad d-\int_{\pi}^{2 \pi} \int_{0}^{\pi}(\sin x+\cos y) d x d y$
e- $\iint_{S}(\sin x+\cos y) d A \quad$ bounded by the area in fig. 8
f- $\iint_{R} x y^{2} d A \quad$ bounded by the area in fig. 9
$\mathrm{g}-\iint_{T}(x-3 y) d A \quad$ bounded by the area in fig. 10
h- $\iint_{R} d A . \quad$ bounded by the area in fig. 11
i- $\iint_{R} d A$. bounded by the area in fig. 12

Figure 8

Figure 9

Figure 10

Figure 12

Solution

$$
\begin{aligned}
a-\int_{0}^{3} \int_{1}^{2}(1+8 x y) d y d x & =\left.\int_{0}^{3}\left(y+8 x \frac{y^{2}}{2}\right)\right|_{1} ^{2} d x \\
& =\int_{0}^{3}\{1+12 x\} d x \\
& =\left.\left(x+12 \frac{x^{2}}{2}\right)\right|_{0} ^{3} \\
& =(3+6(9))-(0)=(3+54)=\mathbf{5 7}
\end{aligned}
$$

$$
\text { b- } \int_{0}^{1} \int_{0}^{1}\left(1-\frac{x^{2}+y^{2}}{2}\right) d x d y=\int_{0}^{1}\left[x-\frac{x^{3}}{6}-\frac{x y^{2}}{2}\right]_{0}^{1} d y
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left(\frac{5}{6}-\frac{y^{2}}{2}\right) d y=\left[\frac{5}{6} y-\frac{y^{3}}{6}\right]_{0}^{1}=\frac{2}{3} \\
c-\int_{0}^{3} \int_{-2}^{0}\left(x^{2} y-2 x y\right) d y d x= & \int_{0}^{3}\left[\frac{x^{2} y^{2}}{2}-x y^{2}\right]_{-2}^{0} d x=\int_{0}^{3}\left(4 x-2 x^{2}\right) d x \\
& =\left[2 x^{2}-\frac{2 x^{3}}{3}\right]_{0}^{3}=0
\end{aligned}
$$

$$
\begin{aligned}
d-\int_{\pi}^{2 \pi} \int_{0}^{\pi}(\sin x+\cos y) d x d y & =\int_{\pi}^{2 \pi}[-\cos x+x \cos y]_{0}^{\pi} d y: \\
& =\int_{\pi}^{2 \pi}(2+\pi \cos y) d y=[2 y+\pi \sin y]_{\pi}^{2 \pi}=2 \pi
\end{aligned}
$$

$$
\begin{aligned}
& \text { e- } \iint_{S}(\sin x+\cos y) d A \\
&=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2}(\sin x+\cos y) d y d x \\
&=\left.\int_{0}^{\pi / 2} d x(y \sin x+\sin y)\right|_{y=0} ^{y=\pi / 2} \\
&=\int_{0}^{\pi / 2}\left(\frac{\pi}{2} \sin x+1\right) d x \\
&=\left.\left(-\frac{\pi}{2} \cos x+x\right)\right|_{0} ^{\pi / 2}=\frac{\pi}{2}+\frac{\pi}{2}=\pi
\end{aligned}
$$

$$
\text { f- } \begin{aligned}
\iint_{R} x y^{2} d A & =\int_{0}^{1} x d x \int_{x^{2}}^{\sqrt{x}} y^{2} d y \\
& =\left.\int_{0}^{1} x d x\left(\frac{1}{3} y^{3}\right)\right|_{y=x^{2}} ^{y=\sqrt{x}} \\
& =\frac{1}{3} \int_{0}^{1}\left(x^{5 / 2}-x^{7}\right) d x \\
& =\left.\frac{1}{3}\left(\frac{2}{7} x^{7 / 2}-\frac{x^{8}}{8}\right)\right|_{0} ^{1} \\
& =\frac{1}{3}\left(\frac{2}{7}-\frac{1}{8}\right)=\frac{3}{56}
\end{aligned}
$$

$$
\begin{aligned}
\text { g- } & \iint_{T}(x-3 y) d A=\int_{0}^{a} d x \int_{0}^{b(1-(x / a))}(x-3 y) d y \\
& =\left.\int_{0}^{a} d x\left(x y-\frac{3}{2} y^{2}\right)\right|_{y=0} ^{y=b(1-(x / a))} \\
& =\int_{0}^{a}\left[b\left(x-\frac{x^{2}}{a}\right)-\frac{3}{2} b^{2}\left(1-\frac{2 x}{a}+\frac{x^{2}}{a^{2}}\right)\right] d x \\
& =\left.\left(b \frac{x^{2}}{2}-\frac{b}{a} \frac{x^{3}}{3}-\frac{3}{2} b^{2} x+\frac{3}{2} \frac{b^{2} x^{2}}{a}-\frac{1}{2} \frac{b^{2} x^{3}}{a^{2}}\right)\right|_{0} ^{a} \\
& =\frac{a^{2} b}{6}-\frac{a b^{2}}{2}
\end{aligned}
$$

$h-\int_{0}^{1} \int_{x / 2}^{2 x} 1 d y d x+\int_{1}^{2} \int_{x / 2}^{3-x} 1 d y d x$

$$
\begin{aligned}
& =\int_{0}^{1}[y]_{\mathrm{x} / 2}^{2 \mathrm{x}} \mathrm{dx}+\int_{1}^{2}[\mathrm{y}]_{\mathrm{x} / 2}^{3-\mathrm{x}} \mathrm{dx} \\
& =\int_{0}^{1}\left(\frac{3}{2} \mathrm{x}\right) \mathrm{dx}+\int_{1}^{2}\left(3-\frac{3}{2} \mathrm{x}\right) \mathrm{dx} \\
& =\left[\frac{3}{4} \mathrm{x}^{2}\right]_{0}^{1}+\left[3 \mathrm{x}-\frac{3}{4} \mathrm{x}^{2}\right]_{1}^{2}=\frac{3}{2}
\end{aligned}
$$

i- $\int_{0}^{1} \int_{-x}^{\sqrt{x}} 1 d y d x+\int_{1}^{4} \int_{x-2}^{\sqrt{x}} 1 d y d x$

$$
\begin{aligned}
& =\int_{0}^{1}[y]_{-x}^{\sqrt{x}} d x+\int_{1}^{4}[y]_{x-2}^{\sqrt{x}} d x \\
& =\int_{0}^{1}(\sqrt{x}+x) d x+\int_{1}^{4}(\sqrt{x}-x+2) d x
\end{aligned}
$$

$$
=\left[\frac{2}{3} x^{3 / 2}+\frac{1}{2} x^{2}\right]_{0}^{1}+\left[\frac{2}{3} x^{3 / 2}-\frac{1}{2} x^{2}+2 x\right]_{1}^{4}=\frac{13}{3}
$$

b- Poalr form

1- Find the limits of the following integral

(a)

(b)
a- $\int_{0}^{\pi} \int_{0}^{1} r d r d \theta$
b- $\int_{0}^{\pi / 4} \int_{0}^{\sqrt{4 \cos 2 \theta}} r d r d \theta$

2- Evaluate the following
a- $\int_{\pi / 4}^{\pi / 2} \int_{0}^{6 \csc \theta} \mathrm{r}^{2} \cos \theta \mathrm{drd} \theta$
b- $\int_{0}^{\pi / 4} \int_{0}^{2 \sec \theta} \mathrm{r}^{2} \sin \theta \mathrm{drd} \theta$
c- $\int_{\pi / 6}^{\pi / 4} \int_{\csc \theta}^{\sqrt{3} \sec \theta} \mathrm{r} d r d \theta$
$\mathrm{d}-\int_{0}^{\pi / 4} \int_{\sec \theta}^{2 \cos \theta} \frac{1}{\mathrm{r}^{4}} \mathrm{rdrd} \theta$
e- $\iint_{S} x d A \quad$ bounded by area shown in fig. 13
$\mathrm{f}-\iint_{C} y d A \quad$ bounded by area shown in fig. 14
g- $\iint_{\boldsymbol{A}} \boldsymbol{d} \boldsymbol{A} \quad$ bounded by area shown in fig. 15

Figure 13

Figure 15

Solution

$$
\begin{aligned}
& a-\int_{\pi / 4}^{\pi / 2} \int_{0}^{6 \mathrm{csc} \theta} \mathrm{r}^{2} \cos \theta d r d \theta=72 \int_{\pi / 4}^{\pi / 2} \cot \theta \csc ^{2} \theta \mathrm{~d} \theta \\
& =-36\left[\cot ^{2} \theta\right]_{\pi / 4}^{\pi / 2}=36 \\
& \text { b- } \int_{0}^{\pi / 4} \int_{0}^{2 \sec \theta} \mathrm{r}^{2} \sin \theta d r d \theta=\frac{8}{3} \int_{0}^{\pi / 4} \tan \theta \sec ^{2} \theta d \theta=\frac{4}{3} \\
& \text { c- } \int_{\pi / 6}^{\pi / 4} \int_{\csc \theta}^{\sqrt{3} \sec \theta} \mathrm{rdrd} \theta=\int_{\pi / 6}^{\pi / 4}\left(\frac{3}{2} \sec ^{2} \theta-\frac{1}{2} \csc ^{2} \theta\right) \mathrm{d} \theta \\
& =\left[\frac{3}{2} \tan \theta+\frac{1}{2} \cot \theta\right]_{\pi / 6}^{\pi / 4}=2-\sqrt{3} \\
& \int_{0}^{\pi / 4} \int_{\sec \theta}^{2 \cos \theta} \frac{1}{\mathrm{r}^{4}} \mathrm{rdrd} \theta=\int_{0}^{\pi / 4}\left[-\frac{1}{2 \mathrm{r}^{2}}\right]_{\sec \theta}^{2 \cos \theta} \mathrm{~d} \theta=\int_{0}^{\pi / 4}\left(\frac{1}{2} \cos ^{2} \theta-\frac{1}{8} \sec ^{2} \theta\right) \mathrm{d} \theta \\
& =\left[\frac{1}{4} \theta+\frac{1}{8} \sin 2 \ddot{\theta}-\frac{1}{8} \tan \theta\right]_{0}^{\pi / 4}=\frac{\pi}{16}
\end{aligned}
$$

d-

$$
\begin{aligned}
\mathrm{e}-\iint_{S} x d A & =2 \int_{0}^{\pi / 4} \int_{\sec \theta}^{\sqrt{2}} r \cos \theta r d r d \theta \\
& =\frac{2}{3} \int_{0}^{\pi / 4} \cos \theta\left(2 \sqrt{2}-\sec ^{3} \theta\right) d \theta \\
& =\left.\frac{4 \sqrt{2}}{3} \sin \theta\right|_{0} ^{\pi / 4}-\left.\frac{2}{3} \tan \theta\right|_{0} ^{\pi / 4} \\
& =\frac{4}{3}-\frac{2}{3}=\frac{2}{3} \\
\text { f- } \iint_{C} y d A & =\int_{0}^{\pi} \int_{0}^{1+\cos \theta} r \sin \theta r d r d \theta \\
& =\frac{1}{3} \int_{0}^{\pi} \sin \theta(1+\cos \theta)^{3} d \theta \quad \text { Let } u=1+\cos \theta \\
& =\frac{1}{3} \int_{0}^{2} u^{3} d u=\left.\frac{u^{4}}{12}\right|_{0} ^{2}=\frac{4}{3} \quad d u=-\sin \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{g}-\int_{\pi / 4}^{3 \pi / 4} \int_{\mathrm{csc} \theta}^{2 \sin \theta} \mathrm{rdrd} \theta & =\frac{1}{2} \int_{\pi / 4}^{3 \pi / 4}\left(4 \sin ^{2} \theta-\csc ^{2} \theta\right) \mathrm{d} \theta \\
& =\frac{1}{2}[2 \theta-\sin 2 \theta+\cot \theta]_{\pi / 4}^{3 \pi / 4}=\frac{\pi}{2}
\end{aligned}
$$

c- Change of variables

Evaluate the following integrals in polar form
a- $\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}}\left(x^{2}+y^{2}\right) d x d y$
b- $\int_{0}^{2} \int_{0}^{x} y d y d x$

$$
\int_{\sqrt{2}}^{2} \int_{\sqrt{4-y^{2}}}^{y} d x d y
$$

c-
$\mathrm{d}-\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{2}{\left(1+x^{2}+y^{2}\right)^{2}} d y d x$
e- $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}}(x+2 y) d y d x$
$\mathrm{f}-\iint_{S}(x+y) d A$
where s is the area bounded in fig. 16
g- $\iint_{T}\left(x^{2}+y^{2}\right) d A \quad$ where T is the area bounded in fig. 17

Figure 17

Figure 16

Solution

$$
\begin{aligned}
& \text { a- } \int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}}\left(x^{2}+y^{2}\right) d x d y \\
& x_{2}=\sqrt{4-y^{2}} \quad, \quad x_{1}=0 \\
& y_{2}=2 \quad, \quad y_{1}=0
\end{aligned}
$$

$$
f(x, y)=x^{2}+y^{2}=r^{2} \quad, \quad d x d y=r d r d \theta
$$

$$
\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}}\left(x^{2}+y^{2}\right) d x d y=\int_{\theta_{1}=0}^{\theta_{2}=\frac{\pi}{2}} \int_{r_{1}=0}^{r_{2}=2} r^{2} r d r d \theta
$$

$$
=\int_{\theta_{1}=0}^{\theta_{2}=\frac{\pi}{2}} \int_{r_{1}=0}^{r_{2}=2} r^{3} d r d \theta=\left.\int_{0}^{\pi / 2} \frac{r^{4}}{4}\right|_{0} ^{2} d r d \theta=4 \int_{0}^{\pi / 2} \mathrm{~d} \theta=2 \pi
$$

b- $\int_{0}^{2} \int_{0}^{x} y d y d x$

$$
\begin{array}{ll}
y_{2}=x & , \quad y_{1}=0 \\
x_{2}=2 & , \quad x_{1}=0
\end{array}
$$

$f(x, y)=y=r \sin \theta \quad, \quad d x d y=r d r d \theta$
$\int_{0}^{2} \int_{0}^{x} y d y d x=\int_{0}^{\pi / 4} \int_{0}^{2 \sec \theta} r^{2} \sin \theta d r d \theta$

$$
=\frac{8}{3} \int_{0}^{\pi / 4} \tan \theta \sec ^{2} \theta \mathrm{~d} \theta=\frac{4}{3}
$$

c- $\int_{\sqrt{2}}^{2} \int_{\sqrt{4-y^{2}}}^{y} d x d y$

$$
\begin{array}{ll}
x_{2}=y & , \quad x_{1}=\sqrt{4-y^{2}} \\
y_{2}=2 & , \quad y_{1}=\sqrt{2}
\end{array}
$$

$$
f(x, y)=1 \quad, \quad d x d y=r d r d \theta
$$

$$
\int_{\sqrt{2}}^{2} \int_{\sqrt{4-y^{2}}}^{y} \mathrm{dydx}=\int_{\pi / 4}^{\pi / 2} \int_{2}^{2 \csc \theta} \mathrm{rdrd} \theta
$$

$$
=\int_{\pi / 6}^{\pi / 4}\left(2 \csc ^{2} \theta-2\right) \mathrm{d} \theta=\left[-2 \cot \theta-\frac{1}{2} \theta\right]_{\pi / 4}^{\pi / 2}
$$

$$
=2-\frac{\pi}{2}
$$

$\mathrm{d}-\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{2}{\left(1+x^{2}+y^{2}\right)^{2}} d y d x$

$$
\begin{aligned}
& y_{2}=\sqrt{1-x^{2}} \quad, \quad y_{1}=-\sqrt{1-x^{2}} \\
& x_{2}=1 \quad, \quad x_{1}=-1
\end{aligned}
$$

$$
\frac{2}{\left(1+x^{2}+y^{2}\right)}=\frac{2}{\left(1+r^{2}\right)} \quad, \quad d x d y=r d r d \theta
$$

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{2}{\left(1+x^{2}+y^{2}\right)^{2}} d y d x=
$$

$$
=4 \int_{0}^{\pi / 2} \int_{0}^{1} \frac{2 \mathrm{r}}{\left(1+\mathrm{r}^{2}\right)^{2}} \mathrm{dr} \mathrm{~d} \theta=4 \int_{0}^{\pi / 2}\left[-\frac{1}{1+\mathrm{r}^{2}}\right]_{0}^{1} \mathrm{~d} \theta=2 \int_{0}^{\pi / 2} \mathrm{~d} \theta=\pi
$$

$$
\begin{gathered}
\mathrm{e}-\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}}(x+2 y) d y d x \\
x_{2}=1 \quad, \quad x_{1}=0 \\
y_{2}=\sqrt{2-x^{2}} \quad, \quad y_{1}=x \\
(x+2 y)=r(\cos \theta+2 \sin \theta)
\end{gathered}
$$

$d x d y=r d r d \theta$
$\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}}(x+2 y) d y d x=\int_{\pi / 4}^{\pi / 2} \int_{0}^{\sqrt{2}}(r \cos \theta+2 r \sin \theta) r d r d \theta$
$=\int_{\pi / 4}^{\pi / 2}\left[\frac{\mathrm{r}^{3}}{3} \cos \theta+\frac{2 \mathrm{r}^{3}}{3} \sin \theta\right]_{0}^{\sqrt{2}} \mathrm{~d} \theta=\int_{\pi / 4}^{\pi / 2}\left(\frac{2 \sqrt{2}}{3} \cos \theta+\frac{4 \sqrt{2}}{3} \sin \theta\right) \mathrm{d} \theta$
$=\left[\frac{2 \sqrt{2}}{3} \sin \theta-\frac{4 \sqrt{2}}{3} \cos \theta\right]_{\pi / 4}^{\pi / 2}=\frac{2(1+\sqrt{2})}{3}$

$$
\text { f- } \begin{aligned}
\iint_{S}(x+y) d A & =\int_{0}^{\pi / 3} d \theta \int_{0}^{a}(r \cos \theta+r \sin \theta) r d r \\
& =\int_{0}^{\pi / 3}(\cos \theta+\sin \theta) d \theta \int_{0}^{a} r^{2} d r \\
& =\left.\frac{a^{3}}{3}(\sin \theta-\cos \theta)\right|_{0} ^{\pi / 3} \\
& =\left[\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right)-(-1)\right] \frac{a^{3}}{3}=\frac{(\sqrt{3}+1) a^{3}}{6}
\end{aligned}
$$

$\mathrm{h}-\iint_{T}\left(x^{2}+y^{2}\right) d A=\int_{0}^{\pi / 4} d \theta \int_{0}^{\sec \theta} r^{3} d r$

$$
=\frac{1}{4} \int_{0}^{\pi / 4} \sec ^{4} \theta d \theta
$$

$$
=\frac{1}{4} \int_{0}^{\pi / 4}\left(1+\tan ^{2} \theta\right) \sec ^{2} \theta d \theta \quad \begin{array}{ll}
\text { Let } u=\tan \theta \\
& d u=\sec ^{2} \theta d \theta
\end{array}
$$

$$
\begin{aligned}
& =\frac{1}{4} \int_{0}^{1}\left(1+u^{2}\right) d u \\
& =\left.\frac{1}{4}\left(u+\frac{u^{3}}{3}\right)\right|_{0} ^{1}=\frac{1}{3}
\end{aligned}
$$

d- Triple integral

Evaluate the following integrals:
a- $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}+z^{2}\right) d z d y d x$
b- $\int_{0}^{\sqrt{2}} \int_{0}^{3 y} \int_{x^{2}+3 y^{2}}^{8-x^{2}-y^{2}} d z d x d y$
c- $\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \int_{0}^{2 x+y} d z d x d y$ d- $\int_{0}^{\pi / 6} \int_{0}^{1} \int_{-2}^{3} y \sin z d x d y d z$
e- $\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{3}^{4-x^{2}-y} x d z d y d x$

Solution

$$
\begin{aligned}
& \text { a- } \begin{array}{r}
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}+z^{2}\right) d z d y d x=\int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}+\frac{1}{3}\right) d y d x \\
=\int_{0}^{1}\left(x^{2}+\frac{2}{3}\right) d x=1 \\
\text { b- } \int_{0}^{\sqrt{2}} \int_{0}^{3 y} \int_{x^{2}+3 y^{2}}^{8-x^{2}-y^{2}} d z d x d y=\int_{0}^{\sqrt{2}} \int_{0}^{3 y}\left(8-2 x^{2}-4 y^{2}\right) d x d y \\
\quad=\int_{0}^{\sqrt{2}}\left[8 x-\frac{2}{3} x^{3}-4 x y^{2}\right]_{0}^{3 y} d y=\int_{0}^{\sqrt{2}}\left(24 y-18 y^{3}-12 y^{3}\right) d y \\
\quad=\left[12 y^{2}-\frac{15}{2} y^{4}\right]_{0}^{\sqrt{2}}=24-30=-6 \\
\text { c- } \int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \int_{0}^{2 x+y} d z d x d y=\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}}(2 x+y) d x d y
\end{array} l
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{2}\left[x^{2}+x y\right]_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} d y=\int_{0}^{2}\left(4-y^{2}\right)^{1 / 2}(2 y) d y \\
& =\left\lfloor-\frac{2}{3}\left(4-\mathrm{y}^{2}\right)^{0 / 2}\right\rfloor_{0}=\frac{2}{3}(4)^{3 / 2}=\frac{16}{3} \\
& \text { d- } \int_{0}^{\pi / 6} \int_{0}^{1} \int_{-2}^{3} y \sin z d x d y d z=\int_{0}^{\pi / 6} \int_{0}^{1} 5 y \sin z d y d z \\
& =\frac{5}{2} \int_{0}^{\pi / 6} \sin \mathrm{zdz}=\frac{5(2-\sqrt{3})}{4} \\
& \text { e- } \int_{0}^{1} \int_{0}^{1-x^{2}} \int_{3}^{4-x^{2}-y} x d z d y d x=\int_{0}^{1} \int_{0}^{1-x^{2}} x\left(1-x^{2}-y\right) d y d x \\
& =\int_{0}^{1} \mathrm{x}\left[\left(1-\mathrm{x}^{2}\right)^{2}-\frac{1}{2}\left(1-\mathrm{x}^{2}\right)\right] \mathrm{dx}=\int_{0}^{1} \frac{1}{2} \mathrm{x}\left(1-\mathrm{x}^{2}\right)^{2} \mathrm{dx} \\
& =\left[-\frac{1}{12}\left(1-x^{2}\right)^{3}\right]_{0}^{1}=\frac{1}{12}
\end{aligned}
$$

e- Surface area

Find the area of the following surfaces:
a- $Z=f(x, y)=6-3 x-2 y \quad$ lies in the region shown in fig. 18
b- $Z=x^{2}+y^{2} \quad$ lies in the region shown in fig. 19

Figure 18

Figure 19

Solution

$$
\text { a- } Z=6-3 x-2 y
$$

$$
\frac{\partial \mathrm{f}}{\partial \mathrm{x}}=-3, \quad \frac{\partial \mathrm{f}}{\partial \mathrm{y}}=-2, \quad 0 \leq x \leq 2, \quad 0 \leq y \leq-\frac{3}{2} x+3
$$

$$
\begin{aligned}
& S=\iint_{R} \sqrt{1+\left(\frac{\partial \mathrm{f}}{\partial \mathrm{x}}\right)^{2}+\left(\frac{\partial \mathrm{f}}{\partial \mathrm{y}}\right)^{2}} d A \\
& =\int_{0}^{2} \int_{0}^{-\frac{3}{2} x+3} \sqrt{(-3)^{2}+(-2)^{2}+1} d y d x=\sqrt{14} \int_{0}^{2}\left(-\frac{3}{2} x+3\right) d x \\
& S=\left.\sqrt{14}\left(-\frac{3}{4} x^{2}+3 x\right)\right|_{0} ^{2}=3 \sqrt{14}
\end{aligned}
$$

b- $Z=x^{2}+y^{2}$

$$
\begin{aligned}
& \frac{\partial \mathrm{f}}{\partial \mathrm{x}}=2 x \quad, \quad \frac{\partial \mathrm{f}}{\partial \mathrm{y}}=2 y \\
& S=\iint_{R} \sqrt{1+\left(\frac{\partial \mathrm{f}}{\partial \mathrm{x}}\right)^{2}+\left(\frac{\partial \mathrm{f}}{\partial \mathrm{y}}\right)^{2}} d A \\
& =\iint_{R} \sqrt{1+4 \mathrm{x}^{2}+4 \mathrm{y}^{2}} d A \quad r^{2}=x^{2}+y^{2}
\end{aligned}
$$

$$
=\int_{0}^{2 \pi} \int_{0}^{3} r \sqrt{1+4 r^{2}} d r d \theta=\left.\frac{2}{24} \int_{0}^{2 \pi}\left[1+4 r^{2}\right]^{\frac{3}{2}}\right|_{0} ^{3} d \theta=18 \int_{0}^{2 \pi} d \theta=36 \pi
$$

