14-105 Two airstreams are mixed steadily. The specific humidity, the relative humidity, the dry-bulb temperature, and the volume flow rate of the mixture are to be determined.

Assumptions 1 Steady operating conditions exist 2 Dry air and water vapor are ideal gases. $\mathbf{3}$ The kinetic and potential energy changes are negligible. 4 The mixing section is adiabatic.

Properties Properties of each inlet stream are determined from the psychrometric chart (Fig. A-31) to be

$$
\begin{aligned}
h_{1} & =62.7 \mathrm{~kJ} / \mathrm{kg} \text { dry air } \\
\omega_{1} & =0.0119 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg} \text { dry air } \\
\boldsymbol{v}_{1} & =0.882 \mathrm{~m}^{3} / \mathrm{kg} \text { dry air }
\end{aligned}
$$

and

$$
\begin{array}{rl}
h_{2} & =31.9 \mathrm{~kJ} / \mathrm{kg} \text { dry air } \\
\omega_{2} & =0.0079 \mathrm{~kg} \mathrm{H} \\
2 & \mathrm{O} / \mathrm{kg} \text { dry air } \\
\boldsymbol{v}_{2} & =0.819 \mathrm{~m}^{3} / \mathrm{kg} \text { dry air }
\end{array}
$$

Analysis The mass flow rate of dry air in each stream is

$$
\begin{aligned}
& \dot{m}_{a 1}=\frac{\dot{\boldsymbol{V}}_{1}}{\boldsymbol{v}_{1}}=\frac{20 \mathrm{~m}^{3} / \mathrm{min}}{0.882 \mathrm{~m}^{3} / \mathrm{kg} \text { dry air }}=22.7 \mathrm{~kg} / \mathrm{min} \\
& \dot{m}_{a 2}=\frac{\dot{\boldsymbol{V}}_{2}}{\boldsymbol{v}_{2}}=\frac{25 \mathrm{~m}^{3} / \mathrm{min}}{0.819 \mathrm{~m}^{3} / \mathrm{kg} \text { dry air }}=30.5 \mathrm{~kg} / \mathrm{min}
\end{aligned}
$$

From the conservation of mass,

$$
\dot{m}_{a 3}=\dot{m}_{a 1}+\dot{m}_{a 2}=(22.7+30.5) \mathrm{kg} / \mathrm{min}=53.2 \mathrm{~kg} / \mathrm{min}
$$

The specific humidity and the enthalpy of the mixture can be determined from Eqs. 14-24, which are obtained by combining the conservation of mass and energy equations for the adiabatic mixing of two streams:

$$
\begin{aligned}
& \frac{\dot{m}_{a 1}}{\dot{m}_{a 2}}=\frac{\omega_{2}-\omega_{3}}{\omega_{3}-\omega_{1}}=\frac{h_{2}-h_{3}}{h_{3}-h_{1}} \\
& \frac{22.7}{30.5}=\frac{0.0079-\omega_{3}}{\omega_{3}-0.0119}=\frac{31.9-h_{3}}{h_{3}-62.7}
\end{aligned}
$$

which yields,

$$
\begin{aligned}
\omega_{3} & =\mathbf{0 . 0 0 9 6} \mathbf{~ k g ~ H} \mathbf{2} \mathbf{O} / \mathbf{k g} \text { dry air } \\
h_{3} & =45.0 \mathrm{~kJ} / \mathrm{kg} \text { dry air }
\end{aligned}
$$

These two properties fix the state of the mixture. Other properties of the mixture are determined from the psychrometric chart:

$$
\begin{aligned}
T_{3} & =\mathbf{2 0 . 6}{ }^{\circ} \mathrm{C} \\
\phi_{3} & =\mathbf{6 3 . 4} \% \\
\boldsymbol{v}_{3} & =0.845 \mathrm{~m}^{3} / \mathrm{kg} \text { dry air }
\end{aligned}
$$

Finally, the volume flow rate of the mixture is determined from

$$
\dot{\boldsymbol{V}}_{3}=\dot{m}_{a 3} \boldsymbol{v}_{3}=(53.2 \mathrm{~kg} / \mathrm{min})\left(0.845 \mathrm{~m}^{3} / \mathrm{kg}\right)=\mathbf{4 5 . 0} \mathrm{m}^{3} / \mathbf{m i n}
$$

