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Lecture Four 

Circuit Theorems 

4.1 Introduction 

          The growth in areas of application of electric circuits has led to an evolution from simple to 

complex circuits. To handle the complexity, engineers over the years have developed some 

theorems to simplify circuit analysis. Such theorems include Thevenin’s and Norton’s theorems. 

Since these theorems are applicable to linear circuits, we first discuss the concept of circuit 

linearity. In addition to circuit theorems, we discuss the concepts of superposition, maximum 

power transfer, Millman’s theorem, Substitution theorem, and Reciprocity theorem in this 

lecture.  

4.2 Linearity Property 

 Linearity is the property of an element describing a linear relationship between cause and effect. 

The property is a combination of both the homogeneity property and the additivity property.  

The homogeneity property requires that if the input (also called the excitation) is multiplied by a 

constant, then the output (also called the response) is multiplied by the same constant. For a 

resistor, for example, Ohm’s law relates the input i to the output v, 

               v = iR                                                                                                                      (4.1) 

If the current is increased by a constant k, then the voltage increases correspondingly by k, that 

is, 

               kiR = kv                                                                                                                  (4.2) 

The additivity property requires that the response to a sum of inputs is the sum of the responses to 

each input applied separately. Using the relationship of a resistor, if 

               v1 = i1R   and    v2 = i2R                                                                                          (4.3)  

then applying (i1 + i2) gives 

               v = (i1 + i2) R = i1R + i2R = v1 + v2                                                                        (4.4) 

A linear circuit is one whose output is linearly related (or directly proportional) to its input.            
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Example 4.1: For the circuit in Fig. 4.1, find io when vs = 12 V and vs = 24 V. 

Solution:    Applying KVL to the two loops, we obtain 

               12i1 − 4i2 + vs = 0                                                                                                 (4.1.1) 

              − 4i1 + 16i2 − 3vx − vs = 0                                                                                      (4.1.2) 

But vx = 2i1. Equation (4.1.2) becomes 

              −10i1 + 16i2 − vs = 0                                                                                              (4.1.3) 

Adding Eqs. (4.1.1) and (4.1.3) yields 

               2i1 + 12i2 = 0 ⇒ i1 = −6i2 

Substituting this in Eq. (4.1.1), we get 

              −76i2 + vs = 0 ⇒ i2 =vs/76 

When vs = 12 V,          io = i2 =12/76A 

When vs = 24 V,          io = i2 =24/76A 

 

4.3 Superposition           

The idea of superposition rests on the linearity property. 

The superposition principle states that the voltage across (or current through) an element in 

a linear circuit is the algebraic sum of the voltages across (or currents through) that element 

due to each independent source acting alone. 

However, to apply the superposition principle, we must keep two things in mind: 

1. We consider one independent source at a time while all other independent sources are turned 

off. This implies that we replace every voltage source by 0 V (or a short circuit), and every 

current source by 0 A (or an open circuit).  

2. Dependent sources are left intact because they are controlled by circuit variables. With these in 

mind, we apply the superposition principle in three steps: 

 

Steps to Apply Super position Principle: 

1.  Turn off all independent sources except one source. Find the output (voltage or current) due 

to that active source using nodal or mesh analysis. 

2.   Repeat step 1 for each of the other independent sources. 

3. Find the total contribution by adding algebraically all the contributions due to the 

independent sources. 

 

Fig. 4.1: For Example 4.1. 
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Analyzing a circuit using superposition has one major disadvantage: it may very likely involve 

more work. Keep in mind that superposition is based on linearity.  

Example 4.2: Use the superposition theorem to find v in the circuit in Fig. 4.2. 

Solution: 

Since there are two sources, let 

               v = v1 + v2 

where v1 and v2 are the contributions due to the 6-V voltage 

source and the 3-A current source, respectively. To obtain v1, 

we set the current source to zero, as shown in Fig. 4.3(a). 

Applying KVL to the loop in Fig. 4.3(a) gives 

               12i1 − 6 = 0 ⇒ i1 = 0.5 A 

Thus, 

               v1 = 4i1 = 2 V 

We may also use voltage division to get v1 by writing 

               𝒗𝟏  =
𝟒

𝟒 + 𝟖
(𝟔)  =  𝟐 𝑽 

To get v2, we set the voltage source to zero, as in Fig. 4.3(b). 

Using current division, 

               𝒊𝟑  =
𝟖

𝟒 + 𝟖
(𝟑)  =  𝟐 𝑨 

Hence,         v2 = 4i3 = 8 V 

And we find          v = v1 + v2 = 2 + 8 = 10 V 
 

4.4 Source Transformation 

          We have noticed that series-parallel combination and wye-delta transformation help 

simplify circuits. Source transformation is another tool for simplifying circuits. We can substitute 

a voltage source in series with a resistor for a current source in parallel with a resistor, or vice 

versa, as shown in Fig. 4.4. Either substitution is known as a source transformation.  

 

Fig. 4.4: Transformation of independent sources. 

Fig. 4.2: For Example 4.2. 

Fig. 4.3: For Example 4.2:  

(a) calculating v1, (b) calculating v2. 
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in  ssource vA source transformation is the process of replacing a voltage  Key Point:

series with a resistor R by a current source is in parallel with a resistor R, or vice versa. 

 

 

           

          We need to find the relationship between vs and is that guarantees the two configurations in 

Fig. 4.4 are equivalent with respect to nodes a, b.  

   Suppose RL, is connected between nodes a, b in Fig. 4.4(a). Using Ohms law, the current in RL 

is. 

                𝒊𝑳 =
𝒗𝒔

(𝑹+𝑹𝑳)
                  R and RL in series                                                            (4.5) 

If it is to be replaced by a current source then load current must be 
𝑽

(𝑹+𝑹𝑳)
             

        Now suppose the same resistor RL, is connected between nodes a, b in Fig. 4.4 (b). Using 

current division, the current in RL, is 

               𝒊𝑳 = 𝒊𝒔
𝑹

(𝑹+𝑹𝑳)
                                                                                                        (4.6) 

          If the two circuits in Fig. 4.4 are equivalent, these resistor currents must be the same. 

Equating the right-hand sides of Eqs.4.5 and 4.6 and simplifying 

               𝒊𝒔 =
𝒗𝒔

𝑹
  𝑜𝑟    𝒗𝒔 =  𝒊𝒔 𝑹                                                                                        (4.7) 

 Source transformation also applies to dependent sources, provided we carefully handle the 

dependent variable. As shown in Fig. 4.5, a dependent voltage source in series with a resistor can 

be transformed to a dependent current source in parallel with the resistor or vice versa.  

 

Fig. 4.5: Transformation of dependent sources. 

     However, we should keep the following points in mind when dealing with source 

transformation. 

1. Note from Fig. 4.4 (or Fig. 4.5) that the arrow of the current source is directed toward the 

positive terminal of the voltage source. 
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Fig. 4.6 
Fig. 4.7        

2. Note from Eq. (4.7) that source transformation is not possible when R = 0, which is the case 

with an ideal voltage source. However, for a practical, nonideal voltage source, R ≠ 0. Similarly, 

an ideal current source with R =∞cannot be replaced by a finite voltage source.  

Example 4.3: Use source transformation to find vo in the circuit in Fig. 4.6. 

Solution: 

          We first transform the current and voltage sources to obtain the circuit in Fig. 4.7(a). 

Combining the 4-Ω and 2-Ω resistors in series and transforming the 12-V voltage source gives us 

Fig. 4. 7(b). We now combine the 3-Ω and 6-Ω resistors in parallel to get 2-Ω. We also combine 

the 2-A and 4-A current sources to get a 2-A source. Thus, by repeatedly applying source 

transformations, we obtain the circuit in Fig. 4.7 (c).                                                                                                   

  

    

 

Alternatively, since the 8-Ω and 2-Ω resistors in Fig. 4.7(c) are in parallel, they have the same 

voltage vo across them. Hence, 

vo = (8||2)(2 A) = 
𝟖×𝟐

𝟏𝟎
 (2) = 3.2 V 
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4.5 Thevenin’s Theorem 

          It often occurs in practice that a particular element in a circuit is variable (usually called the 

load) while other elements are fixed. As a typical example, a household outlet terminal may be 

connected to different appliances constituting a variable load. Each time the variable element is 

changed, the entire circuit has to be analyzed all over again. To avoid this problem, Thevenin’s 

theorem provides a technique by which the fixed part of the circuit is replaced by an equivalent 

circuit. 

       According to Thevenin’s theorem, the linear 

circuit in Fig. 4.8(a) can be replaced by that in Fig. 

4.8(b) is known as the Thevenin equivalent circuit; it was 

developed in 1883 by M. Leon Thevenin (1857–1926), a 

French telegraph engineer. 

Thevenin’s theorem states that a linear two-terminal 

circuit can be replaced by an equivalent circuit 

consisting of a voltage source VTh in series with a 

resistor RTh, where VTh is the open-circuit voltage at 

the terminals and RTh is the input or equivalent 

resistance at the terminals when the independent 

sources are turned off. 

         To find the Thevenin equivalent voltage VTh and resistance RTh, suppose the two circuits in 

Fig. 4.8 are equivalent. the open-circuit voltage across the terminals a-b in Fig. 4.8(a) must be 

equal to the voltage source VTh in Fig. 4.8(b), since the two circuits are equivalent. Thus VTh is 

the open-circuit voltage across the terminals as shown in Fig. 4.9(a); that is, 

               VTh = voc                                                                                                                (4.8) 

 

Fig. 4.9: Finding VTh and RTh. 

Fig. 4.8: Replacing a linear two-terminal 

circuit by its Thevenin equivalent: (a) 

original circuit, (b) the Thevenin equivalent 

circuit. 
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          RTh is the input resistance at the terminals when the independent sources are turned off, as 

shown in Fig. 4.9(b); that is, 

               RTh = Rin                                                                                                                 (4.9) 

        To apply this idea in finding the Thevenin resistance RTh, we need to consider two cases. 

CASE 1: If the network has no dependent sources, we turn 

off all independent sources. RTh is the input resistance of 

the network looking between terminals a and b, as shown 

in Fig. 4.9(b). 

CASE 2: If the network has dependent sources, we turn off 

all independent sources. As with superposition, dependent 

sources are not to be turned off because they are controlled 

by circuit variables. We apply a voltage source vo at 

terminals a and b and determine the resulting current io. 

Then RTh = vo/io, as shown in Fig. 4.10(a). Alternatively, 

we may insert a current source io at terminals a-b as shown 

in Fig. 4.10(b) and find the terminal voltage vo. Again RTh 

= vo/io. Either of the two approaches will give the same result. In either approach we may assume 

any value of vo and io. For example, we may use vo = 1 V or io = 1 A, or even use unspecified 

values of vo or io. 

          It often occurs that RTh takes a negative value. In this case, the negative resistance (v = 

−iR) implies that the circuit is supplying power. This is possible in a circuit with dependent 

sources.  

          The current IL through the load and the voltage VL across the load are easily determined 

once the Thevenin equivalent of the circuit at the load’s terminals is obtained, as shown in Fig. 

4.11(b). From Fig. 4.11(b), we obtain 

               𝑰𝑳  =
𝑽𝑻𝒉

𝑹𝑻𝒉 + 𝑹𝑳
                                                                                                    (4.10a) 

               𝑽𝑳  =  𝑹𝑳𝑰𝑳  =
𝑹𝑳

𝑹𝑻𝒉 + 𝑹𝑳
𝑽𝑻𝒉                                                                             (4.10b) 

Note from Fig. 4.11(b) that the Thevenin equivalent is a simple voltage divider, yielding VL by 

mere inspection. 

Fig. 4.10: Finding RTh when circuit has  

dependent sources. 
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Fig. 4.11: A circuit with a load :(a) original circuit, (b) Thevenin equivalent. 

Example 4.4: Find the Thevenin equivalent circuit of the circuit shown in Fig. 4.12, to the left of 

the terminals a-b. Then find the current through RL = 6, 16, and 36 Ω. 

 

Fig. 4.12: For Example 4.4. 

Solution: 

          We find RTh by turning off the 32-V voltage source (replacing it with a short circuit) and 

the 2-A current source (replacing it with an open circuit). The circuit becomes what is shown in 

Fig. 4.13(a). Thus, 

               𝑹𝑻𝒉  =  𝟒||𝟏𝟐 +  𝟏 =
𝟒 × 𝟏𝟐

𝟏𝟔
 +  𝟏 =  𝟒 Ω 

 

Fig. 4.13: For Example 4.4: (a) finding RTh, (b) finding VTh. 

        To find VTh, consider the circuit in Fig. 4.13(b). Applying mesh analysis to the two loops, 

we obtain 

               −32 + 4i1 + 12(i1 − i2) = 0,        i2 = −2 A 

Solving for i1, we get i1 = 0.5 A. Thus, 

               VTh = 12(i1 − i2) = 12(0.5 + 2.0) = 30 V       
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The Thevenin equivalent circuit is shown in Fig. 4.14. The current through RL is 

               𝑰𝑳  =
𝑽𝑻𝒉

𝑹𝑻𝒉 + 𝑹𝑳
 =

𝟑𝟎

𝟒 + 𝑹𝑳
 

When RL = 6,       𝑰𝑳   =
𝟑𝟎

𝟏𝟎
= 3 𝐴 

When RL = 16,     𝑰𝑳   =
𝟑𝟎

𝟐𝟎
= 1.5 𝐴 

When RL = 36,     𝑰𝑳   =
𝟑𝟎

𝟒𝟎
= 0.75 𝐴 

 

4.6 Norton’s Theorem 

          In 1926, about 43 years after Thevenin published his theorem, E. L. Norton, an American 

engineer at Bell Telephone Laboratories, proposed a similar theorem. 

Norton’s theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit 

consisting of a current source IN in parallel with a resistor RN, where IN is the short-circuit current 

through the terminals and RN is the input or equivalent resistance at the terminals when the 

independent sources are turned off. 

          Thus, the circuit in Fig. 4.15(a) can be replaced by the one in Fig. 4.15(b).  

 

Fig. 4.15: (a) Original circuit, (b) Norton equivalent circuit. 

We are mainly concerned with how to get RN and IN. We find RN in the same way we find RTh. 

In fact, the Thevenin and Norton resistances are equal; that is, 

               RN = RTh                                                                                                               (4.11) 

          To find the Norton current IN, we determine the short-circuit current flowing from terminal 

a to b in both circuits in Fig. 4.15. It is evident that the short-circuit current in Fig. 4.15(b) is IN. 

This must be the same short-circuit current from terminal a to b in Fig. 4.15(a), since the two 

circuits are equivalent. Thus, 

               IN = isc                                                                                                                    (4.12) 

Fig. 4.14: The Thevenin equivalent circuit 
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Dependent and independent sources are treated the same way as in Thevenin’s theorem. Observe 

the close relationship between Norton’s and Thevenin’s theorems: RN = RTh as in Eq. (4.11), and 

               𝐈𝐍  =
𝑽𝑻𝒉

𝑹𝑻𝒉
                                                                                                                (4.13) 

This is essentially source transformation. For this reason, source transformation is often called 

Thevenin-Norton transformation. 

      We can calculate any two of the three using the method that takes the least effort and use 

them to get the third using Ohm’s law. Example 4.10 will illustrate this. Also, since 

               VTh = voc                                                                                                              (4.14a) 

               IN = isc                                                                                                                  (4.14b) 

               𝑹𝑻𝒉 =
𝒗𝒐𝒄

𝒊𝒔𝒄
 =  𝑹𝑵                                                                                                (4.14c) 

the open-circuit and short-circuit tests are sufficient to find any Thevenin or Norton equivalent. 

 

Example 4.5 Find the Norton equivalent circuit of the circuit in Fig. 4.16. 

Solution: 

          We find RN in the same way we find RTh in 

the Thevenin equivalent circuit. Set the 

independent sources equal to zero. This leads to 

the circuit in Fig. 4.17(a), from which we find RN. 

Thus, 

  𝑹𝑵  =  𝟓‖(𝟖 +  𝟒 +  𝟖)  =  𝟓‖𝟐𝟎 =
𝟐𝟎 × 𝟓

𝟐𝟓
 =  𝟒 Ω 

To find IN, we short-circuit terminals a and b, as shown in Fig. 4.17(b). We ignore the 5-Ω 

resistor because it has been short-circuited. Applying mesh analysis, we obtain 

               i1 = 2 A,             20i2 − 4i1 − 12 = 0 

From these equations, we obtain 

               i2 = 1 A = isc = IN 

Alternatively, we may determine IN from VTh/RTh. We obtain VTh as the open-circuit voltage 

across terminals a and b in Fig. 4.17(c). Using mesh analysis, we obtain 

               i3 = 2 A 

Fig. 4.16: For Example 4.5. 
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              25i4 − 4i3 − 12 = 0   ⇒ i4 = 0.8 A 

and 

              voc = VTh = 5i4 = 4 V 

 

Fig. 4.17: For Example 4.5; finding: (a) RN, (b) IN = isc, (c) VTh = voc. 

Hence, 

             𝑰𝑵  =
𝑽𝑻𝒉

𝑹𝑻𝒉
 =

𝟒

𝟒 
=  𝟏 𝑨 

as obtained previously. This also serves to confirm Eq. that 

RTh = voc/isc = 4/1 = 4 Ω. Thus, the Norton equivalent circuit 

is as shown in Fig. 4.18. 

Fig. 4.18: Norton equivalent of the circuit in Fig. 4.16. 

4.7 Maximum Power Transfer 

          In many practical situations, a circuit is designed to provide power to a load. While for 

electric utilities, minimizing power losses in the process of transmission and distribution is 

critical for efficiency and economic reasons, there are other applications in areas such as 

communications where it is desirable to maximize the power delivered to a load. We now address 

the problem of delivering the maximum power to a load when given a system with known 

internal losses.  
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The Thevenin equivalent is useful in finding the maximum 

power a linear circuit can deliver to a load. We assume that we 

can adjust the load resistance RL. If the entire circuit is replaced 

by its Thevenin equivalent except for the load, as shown in Fig. 

4.19, the power delivered to the load is 

          𝒑 =  𝒊𝟐𝑹𝑳  =  ( 
𝑽𝑻𝒉

𝑹𝑻𝒉 + 𝑹𝑳
)

𝟐

 𝑹𝑳                              (4.15) 

For a given circuit, VTh and RTh are 

fixed. By varying the load resistance RL, 

the power delivered to the load varies as sketched in Fig. 4.20. We notice 

from Fig. 4.20 that the power is small for small or large values of RL but 

maximum for some value of RL between 0 and ∞. We now want to show 

that this maximum power occurs when RL is equal to RTh. This is known 

as the maximum power theorem. 

Maximum power is transferred to the load when the load resistance equals the Thevenin 

resistance as seen from the load (RL = RTh). 

     To prove the maximum power transfer theorem, we differentiate p in Eq. (4.15) with respect 

to RL and set the result equal to zero. We obtain 

               
𝒅𝒑

𝒅𝑹𝑳
 =  𝑽𝑻𝒉

𝟐   [
(𝑹𝑻𝒉 + 𝑹𝑳)𝟐 − 𝟐𝑹𝑳(𝑹𝑻𝒉 + 𝑹𝑳)

(𝑹𝑻𝒉 + 𝑹𝑳)𝟒
]  =  𝑽𝑻𝒉

𝟐   [
(𝑹𝑻𝒉 + 𝑹𝑳 − 𝟐𝑹𝑳)

(𝑹𝑻𝒉 + 𝑹𝑳)𝟑
 ]   =  𝟎 

This implies that 

               0 = (RTh + RL − 2RL) = (RTh − RL)                                                                      (4.16) 

which yields 

               RL = RTh                                                                                                                (4.17) 

showing that the maximum power transfer takes place when the load resistance RL equals the 

Thevenin resistance RTh. We can readily confirm that Eq. (4.17) gives the maximum power by 

showing that d2p/dR2
L < 0. 

   The maximum power transferred is obtained by substituting Eq. (4.17) into Eq. (4.15), for 

               𝒑𝒎𝒂𝒙  =
𝑽𝑻𝒉

𝟐  

𝟒𝑹𝑻𝒉
                                                                                                         (4.18) 

Fig. 4.19: The circuit used for 

maximum power transfer. 

Fig. 4.20: Power delivered to the 

load as a function of RL 
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Equation (4.18) applies only when RL = RTh. When RL ≠ RTh, we compute the power delivered 

to the load using Eq. (4.15). 

Example 4.6: Find the value of RL for maximum power transfer in the circuit of Fig. 4.21. Find 

the maximum power. 

 

Solution: 

          We need to find the Thevenin resistance RTh and the Thevenin voltage VTh across the 

terminals a-b. To get RTh, we use the circuit in Fig. 4.22(a) and obtain 

               𝑹𝑻𝒉  =  𝟐 + 𝟑 + 𝟔‖𝟏𝟐 =  𝟓 +
𝟔 × 𝟏𝟐

𝟏𝟖
 =  𝟗 Ω 

 

Fig. 4.22: For Example 4.6: (a) finding RTh, (b) finding VTh. 

To get VTh, we consider the circuit in Fig. 4.22(b). Applying mesh analysis, 

               −12 + 18i1 − 12i2 = 0,           i2 = −2 A 

Solving for i1, we get i1 = −2/3. Applying KVL around the outer loop to get VTh across terminals 

a-b, we obtain 

               −12 + 6i1 + 3i2 + 2(0) + VTh = 0 ⇒ VTh = 22 V 

For maximum power transfer, 

               RL = RTh = 9 Ω 

and the maximum power is 

               𝒑𝒎𝒂𝒙  =
𝑽𝑻𝒉

𝟐  

𝟒𝑹𝑳
 =

𝟐𝟐𝟐

𝟒 × 𝟗
 =  𝟏𝟑. 𝟒𝟒 𝑾 

 

Fig. 4.21: For Example 4.6. 
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4.8 Millman’s Theorem 

Through the application of Millman’s theorem, any number of parallel voltage sources can be 

reduced to one. In Fig. 4.23, for example, the three voltage sources can be reduced to one. This 

would permit finding the current through or voltage across RL without having to apply a method 

such as mesh analysis, nodal analysis, superposition, and so on.  

 

Fig. 4.23: Demonstrating the effect of applying Millman’s theorem. 

In general, Millman’s theorem states that for any number of parallel voltage sources, 

      

  

                                                (4.19) 

 

 

and  

                                                      (4.20) 

 

Example 4.7: Using Millman’s theorem, find the current through and voltage across the resistor 

RL of Fig. 4.24. 

Solution: By Eq. (4.19), 

 

 

 

The minus sign is used for E2 /R2 because that supply has 

the opposite polarity of the other two. The chosen reference 

direction is therefore that of E1 and E3. The total 

conductance is unaffected by the direction, 

Fig. 4.24: Example 4.7. 
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And 

𝐸𝑒𝑞 =
+

10𝑉

5𝛺
−

16𝑉

4𝛺
+

8𝑉

2𝛺
1

5𝛺
+

1

4𝛺
+

1

2𝛺

=
2𝐴 − 4𝐴 + 4𝐴

0.2 𝑆 + 0.25 𝑆 + 0.5 𝑆
 

 =
2 𝐴

0.95 𝑆
= 2.105 𝑉 

with     𝑹𝒆𝒒 =
𝟏

𝟏

𝟓𝜴
+

𝟏

𝟒𝜴
+

𝟏

𝟐𝜴

=
𝟏

𝟎.𝟗𝟓 𝑺
= 𝟏. 𝟎𝟓𝟑 𝜴 

The resultant source is shown in Fig. 4.25, and 

             𝑰𝑳 =
𝟐.𝟏𝟎𝟓𝑽

𝟏.𝟎𝟓𝟑𝜴+𝟑𝜴
=

𝟐.𝟏𝟎𝟓 𝑽

𝟒.𝟎𝟓𝟑 𝜴
= 𝟎. 𝟓𝟏𝟗 𝑨 

with     VL= ILRL= (0.519 A)(3 Ω) = 1.557 V 

*The dual of Millman’s theorem appears in Fig. 4.26. It can be shown that Ieq and Req, as in Fig. 

4.26, are given by 

 

 

 

                               (4.21)                                                                                                                                                

 

And                                        (4.22) 

 

 

 

 

 

 

Fig. 4.25: The result of applying 

Millman’s theorem to the network 

of Fig. 4.24. 

Fig. 4.26: The dual effect of Millman’s theorem.     
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4.9 Substitution Theorem 

The substitution theorem states the following: 

If the voltage across and the current through any branch of a 

dc bilateral network are known, this branch can be replaced by 

any combination of elements that will maintain the same 

voltage across and current through the chosen branch. 

More simply, the theorem states that for branch equivalence, the 

terminal voltage and current must be the same. Consider the 

circuit of Fig. 4.27, in which the voltage across and current through the branch a-b are 

determined. Through the use of the substitution theorem, a number of equivalent a-b branches are 

shown in Fig. 4.28. 

 

 

 

 

 

 

 

As demonstrated by the single-source equivalents of Fig. 4.28, a known potential difference and 

current in a network can be replaced by an ideal voltage source and current source, respectively. 

Understand that this theorem cannot be used to solve networks with two or more sources that are 

not in series or parallel. You will also recall from the discussion of bridge networks that V = 0 

Fig. 4.27: Demonstrating the 

effect of the substitution theorem. 

Fig. 4.29: Demonstrating the effect of knowing a voltage at some point in a complex network. 

Fig. 4.28: Equivalent branches for the branch a-b of Fig. 4.27. 
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and I = 0 were replaced by a short circuit and an open circuit, respectively. This substitution is a 

very specific application of the substitution theorem. 

 

 

4.10 Reciprocity Theorem 

          The reciprocity theorem is applicable only to single-source networks. It is, therefore, not a 

theorem employed in the analysis of multisource networks described thus far. The theorem states 

the following: 

The current I in any branch of a network, due to a single voltage source E anywhere else in the 

network, will equal the current through the branch in which the source was originally located 

if the source is placed in the branch in which the current I was originally measured. 

In other words, the location of the voltage source and the resulting current may be interchanged 

without a change in current. The theorem requires that the polarity of the voltage source have the 

same correspondence with the direction of the branch current in each position. In the 

representative network of Fig. 4.31(a), the current I due to the voltage source E was determined. 

If the position of each is interchanged as shown in Fig.4.31 (b), the current I will be the same 

value as indicated. To demonstrate the validity of this statement and the theorem, consider the 

network of Fig. 4.32, in which values for the elements of Fig. 4.31(a) have been assigned. 

The total resistance is 

 

Fig. 4.31: Demonstrating the impact of the reciprocity theorem. 

 

Fig. 4.30: Demonstrating the effect of knowing a current at some point in a complex network. 
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RT = R1 + R2 || (R3 + R4) = 12 Ω + 6 Ω || (2 Ω+ 4 Ω) = 15 Ω 

and    IS = E/RT = 45/15 = 3 A 

with   I = 3 A/2  =1.5 A 

For the network of Fig. 4.33, which corresponds to that of Fig. 4.31(b), we find 

 

 

              RT = R4 + R3 + (R1 || R2) 

                    = 4 +2 +(12 || 60) =10 Ω 

and        Is   = 
𝐸

𝑅𝑇
  =  

45

10
  = 4.5 A 

so that    I    =  
4.5×6

12+6
  = 

4.5

3
  = 1.5 A 

which agrees with the above. 

 

 

 

Fig. 4.32 Finding the current I due to a source E. 

Fig. 4.33: Interchanging the location of E and I of Fig. 4.31 to 

demonstrate the validity of the reciprocity theorem. 


