
2/3 Plane Curvilinear Motion
We now treat the motion of a particle along a curved path which lies

in a single plane. This motion is a special case of the more general three-
dimensional motion introduced in Art. 2/1 and illustrated in Fig. 2/1. If we
let the plane of motion be the x-y plane, for instance, then the coordinates
z and � of Fig. 2/1 are both zero, and R becomes the same as r. As men-
tioned previously, the vast majority of the motions of points or particles
encountered in engineering practice can be represented as plane motion.

Before pursuing the description of plane curvilinear motion in any
specific set of coordinates, we will first use vector analysis to describe
the motion, since the results will be independent of any particular coor-
dinate system. What follows in this article constitutes one of the most
basic concepts in dynamics, namely, the time derivative of a vector.
Much analysis in dynamics utilizes the time rates of change of vector
quantities. You are therefore well advised to master this topic at the
outset because you will have frequent occasion to use it.

Consider now the continuous motion of a particle along a plane curve
as represented in Fig. 2/5. At time t the particle is at position A, which is
located by the position vector r measured from some convenient fixed ori-
gin O. If both the magnitude and direction of r are known at time t, then
the position of the particle is completely specified. At time t � �t, the
particle is at A�, located by the position vector r � �r. We note, of course,
that this combination is vector addition and not scalar addition. The dis-
placement of the particle during time �t is the vector  �r which represents
the vector change of position and is clearly independent of the choice of
origin. If an origin were chosen at some different location, the position
vector r would be changed, but �r would be unchanged. The distance
actually traveled by the particle as it moves along the path from A to A�
is the scalar length �s measured along the path. Thus, we distinguish
between the vector displacement �r and the scalar distance �s.

Velocity
The average velocity of the particle between A and A� is defined as

vav � �r/�t, which is a vector whose direction is that of �r and whose
magnitude is the magnitude of �r divided by �t. The average speed of
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the particle between A and A� is the scalar quotient �s/�t. Clearly, the
magnitude of the average velocity and the speed approach one another
as the interval �t decreases and A and A� become closer together.

The instantaneous velocity v of the particle is defined as the limiting
value of the average velocity as the time interval approaches zero. Thus,

We observe that the direction of �r approaches that of the tangent to
the path as �t approaches zero and, thus, the velocity v is always a vec-
tor tangent to the path.

We now extend the basic definition of the derivative of a scalar
quantity to include a vector quantity and write

(2/4)

The derivative of a vector is itself a vector having both a magnitude and
a direction. The magnitude of v is called the speed and is the scalar

At this point we make a careful distinction between the magnitude
of the derivative and the derivative of the magnitude. The magnitude of
the derivative can be written in any one of the several ways �dr/dt� �

� � �v� � v and represents the magnitude of the velocity, or the
speed, of the particle. On the other hand, the derivative of the magni-
tude is written d�r�/dt � dr/dt � , and represents the rate at which the
length of the position vector r is changing. Thus, these two derivatives
have two entirely different meanings, and we must be extremely careful
to distinguish between them in our thinking and in our notation. For
this and other reasons, you are urged to adopt a consistent notation for
handwritten work for all vector quantities to distinguish them from
scalar quantities. For simplicity the underline v is recommended. Other
handwritten symbols such as , , and are sometimes used.

With the concept of velocity as a vector established, we return to Fig.
2/5 and denote the velocity of the particle at A by the tangent vector v and
the velocity at A� by the tangent v�. Clearly, there is a vector change in
the velocity during the time �t. The velocity v at A plus (vectorially) the
change �v must equal the velocity at A�, so we can write v� � v � �v. In-
spection of the vector diagram shows that �v depends both on the change
in magnitude (length) of v and on the change in direction of v. These two
changes are fundamental characteristics of the derivative of a vector.

Acceleration
The average acceleration of the particle between A and A� is defined

as �v/�t, which is a vector whose direction is that of �v. The magnitude
of this average acceleration is the magnitude of �v divided by �t.

v̂v~v9

ṙ

ṡ� ṙ �

v � �v � � ds
dt

 � ṡ

v � dr
dt

 � ṙ

v � lim
�tl0

 �r
�t
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The instantaneous acceleration a of the particle is defined as the
limiting value of the average acceleration as the time interval ap-
proaches zero. Thus,

By definition of the derivative, then, we write

(2/5)

As the interval �t becomes smaller and approaches zero, the direction of
the change �v approaches that of the differential change dv and, thus,
of a. The acceleration a, then, includes the effects of both the change in
magnitude of v and the change of direction of v. It is apparent, in gen-
eral, that the direction of the acceleration of a particle in curvilinear
motion is neither tangent to the path nor normal to the path. We do ob-
serve, however, that the acceleration component which is normal to the
path points toward the center of curvature of the path.

Visualization of Motion
A further approach to the visualization of acceleration is shown in

Fig. 2/6, where the position vectors to three arbitrary positions on the
path of the particle are shown for illustrative purpose. There is a velocity
vector tangent to the path corresponding to each position vector, and the
relation is v � . If these velocity vectors are now plotted from some ar-
bitrary point C, a curve, called the hodograph, is formed. The derivatives
of these velocity vectors will be the acceleration vectors a � which are
tangent to the hodograph. We see that the acceleration has the same re-
lation to the velocity as the velocity has to the position vector.

The geometric portrayal of the derivatives of the position vector r
and velocity vector v in Fig. 2/5 can be used to describe the derivative of
any vector quantity with respect to t or with respect to any other scalar
variable. Now that we have used the definitions of velocity and accelera-
tion to introduce the concept of the derivative of a vector, it is important
to establish the rules for differentiating vector quantities. These rules

v̇

ṙ

a � dv
dt

 � v̇

a � lim
�tl0

 �v
�t
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are the same as for the differentiation of scalar quantities, except for the
case of the cross product where the order of the terms must be pre-
served. These rules are covered in Art. C/7 of Appendix C and should be
reviewed at this point.

Three different coordinate systems are commonly used for describing
the vector relationships for curvilinear motion of a particle in a plane: rec-
tangular coordinates, normal and tangential coordinates, and polar coor-
dinates. An important lesson to be learned from the study of these
coordinate systems is the proper choice of a reference system for a given
problem. This choice is usually revealed by the manner in which the mo-
tion is generated or by the form in which the data are specified. Each of
the three coordinate systems will now be developed and illustrated.

2/4 Rectangular Coordinates (x-y)
This system of coordinates is particularly useful for describing mo-

tions where the x- and y-components of acceleration are independently
generated or determined. The resulting curvilinear motion is then ob-
tained by a vector combination of the x- and y-components of the posi-
tion vector, the velocity, and the acceleration.

Vector Representation
The particle path of Fig. 2/5 is shown again in Fig. 2/7 along with 

x- and y-axes. The position vector r, the velocity v, and the acceleration
a of the particle as developed in Art. 2/3 are represented in Fig. 2/7 to-
gether with their x- and y-components. With the aid of the unit vectors 
i and j, we can write the vectors r, v, and a in terms of their x- and 
y-components. Thus,

(2/6)

As we differentiate with respect to time, we observe that the time deriv-
atives of the unit vectors are zero because their magnitudes and direc-
tions remain constant. The scalar values of the components of v and a
are merely vx � , vy � and ax � � , ay � . (As drawn in
Fig. 2/7, ax is in the negative x-direction, so that would be a negative
number.)

As observed previously, the direction of the velocity is always tan-
gent to the path, and from the figure it is clear that

If the angle � is measured counterclockwise from the x-axis to v for the
configuration of axes shown, then we can also observe that dy/dx �

tan � � vy/vx.

a2 � ax 

2 � ay 

2   a � �ax 

2 � ay 

2

v2 � vx 

2 � vy 

2   v � �vx 

2 � vy 

2   tan � � 
vy

vx

ẍ
v̇y � ÿẍv̇xẏẋ

 a �  v̇ �  r̈ � ẍi � ÿj

 v �  ṙ � ẋi � ẏj

  r � xi � yj

Article 2/4 Rectangular Coordinates (x-y) 43

Figure 2/7

Path

j

ixi

yj r

A

x

y

A
θ

v a
vy

vx ax

ay



If the coordinates x and y are known independently as functions of
time, x � ƒ1(t) and y � ƒ2(t), then for any value of the time we can com-
bine them to obtain r. Similarly, we combine their first derivatives 
and to obtain v and their second derivatives and to obtain a. On
the other hand, if the acceleration components ax and ay are given as
functions of the time, we can integrate each one separately with re-
spect to time, once to obtain vx and vy and again to obtain x � ƒ1(t) and
y � ƒ2(t). Elimination of the time t between these last two parametric
equations gives the equation of the curved path y � ƒ(x).

From the foregoing discussion we can see that the rectangular-
coordinate representation of curvilinear motion is merely the superposi-
tion of the components of two simultaneous rectilinear motions in the
x- and y-directions. Therefore, everything covered in Art. 2/2 on rectilin-
ear motion can be applied separately to the x-motion and to the y-motion.

Projectile Motion
An important application of two-dimensional kinematic theory is

the problem of projectile motion. For a first treatment of the subject,
we neglect aerodynamic drag and the curvature and rotation of the
earth, and we assume that the altitude change is small enough so that
the acceleration due to gravity can be considered constant. With these
assumptions, rectangular coordinates are useful for the trajectory
analysis.

For the axes shown in Fig. 2/8, the acceleration components are

Integration of these accelerations follows the results obtained previ-
ously in Art. 2/2a for constant acceleration and yields

In all these expressions, the subscript zero denotes initial conditions,
frequently taken as those at launch where, for the case illustrated, 

vy 

2 � (vy)0 

2 � 2g(y � y0)

 x � x0 � (vx)0 t    y � y0 � (vy)0 t � 12 gt2

 vx � (vx)0  vy � (vy)0 � gt

ax � 0   ay � �g

ÿẍẏ
ẋ
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x0 � y0 � 0. Note that the quantity g is taken to be positive throughout
this text.

We can see that the x- and y-motions are independent for the simple
projectile conditions under consideration. Elimination of the time t be-
tween the x- and y-displacement equations shows the path to be parabolic
(see Sample Problem 2/6). If we were to introduce a drag force which de-
pends on the speed squared (for example), then the x- and y-motions would
be coupled (interdependent), and the trajectory would be nonparabolic.

When the projectile motion involves large velocities and high alti-
tudes, to obtain accurate results we must account for the shape of the
projectile, the variation of g with altitude, the variation of the air den-
sity with altitude, and the rotation of the earth. These factors introduce
considerable complexity into the motion equations, and numerical inte-
gration of the acceleration equations is usually necessary.
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This stroboscopic photograph of a bouncing ping-pong ball suggests not
only the parabolic nature of the path, but also the fact that the speed is
lower near the apex.
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SAMPLE PROBLEM 2/5

The curvilinear motion of a particle is defined by vx � 50 � 16t and y �

100 � 4t2, where vx is in meters per second, y is in meters, and t is in seconds.
It is also known that x � 0 when t � 0. Plot the path of the particle and deter-
mine its velocity and acceleration when the position y � 0 is reached.

Solution. The x-coordinate is obtained by integrating the expression for vx,
and the x-component of the acceleration is obtained by differentiating vx. Thus,

The y-components of velocity and acceleration are

We now calculate corresponding values of x and y for various values of t and
plot x against y to obtain the path as shown.

When y � 0, 0 � 100 � 4t2, so t � 5 s. For this value of the time, we have

The velocity and acceleration components and their resultants are shown on the
separate diagrams for point A, where y � 0. Thus, for this condition we may
write

Ans.

Ans. a � �16i � 8j m/s2

 v � �30i � 40j m/s

 a � �(�16)2 � (�8)2 � 17.89 m/s2

 v � �(�30)2 � (�40)2 � 50 m/s

 vy � �8(5) � �40 m/s

 vx � 50 � 16(5) � �30 m/s

 ay � d
dt

 (�8t)  ay � �8 m/s2[ay � v̇y]

 vy � d
dt

 (100 � 4t2)    vy � �8t m/s[vy � ẏ]

ax � d
dt

 (50 � 16t)   ax � �16 m/s2[ax � v̇x]

�x

0
 dx � � t

0
 (50 � 16t) dt   x � 50t � 8t2 m��  dx � �  vx dt�
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Helpful Hint

We observe that the velocity vector lies
along the tangent to the path as it
should, but that the acceleration vector
is not tangent to the path. Note espe-
cially that the acceleration vector has a
component that points toward the in-
side of the curved path. We concluded
from our diagram in Fig. 2/5 that it is
impossible for the acceleration to have a
component that points toward the out-
side of the curve.
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SAMPLE PROBLEM 2/6

A team of engineering students designs a medium-size catapult
which launches 8-lb steel spheres. The launch speed is 
the launch angle is above the horizontal, and the launch posi-
tion is 6 ft above ground level. The students use an athletic field with
an adjoining slope topped by an 8-ft fence as shown. Determine:

(a) the x-y coordinates of the point of first impact

(b) the time duration of the flight

(c) the maximum height h above the horizontal field attained by the ball

(d) the velocity (expressed as a vector) with which the projectile strikes the
ground

Repeat part (a) for a launch speed of

Solution. We make the assumptions of constant gravitational acceleration
and no aerodynamic drag. With the latter assumption, the 8-lb weight of the pro-
jectile is irrelevant. Using the given x-y coordinate system, we begin by checking
the y-displacement at the horizontal position of the fence.

(a) Because the y-coordinate of the top of the fence is the
projectile clears the fence. We now find the flight time by setting 

Ans.

(b) Thus the point of first impact is . Ans.

(c) For the maximum height:

Ans.

(d) For the impact velocity:

So the impact velocity is . Ans.

If the time from launch to the fence is found by

and the corresponding value of y is

For this launch speed, we see that the projectile hits the fence, and the point 
of impact is

Ans.

For lower launch speeds, the projectile could land on the slope or even on the
level portion of the athletic field.

(x, y) � (130, 24.9) ft

[y � y0 � (vy)0   t � 12 gt2]   y � 6 � 80 sin 35�(2.12) � 12 (32.2)(2.12)2 � 24.9 ft

[x � x0 � (vx)0t]   100 � 30 � (75 cos 35�)t   t � 2.12 sec

v0 � 75 ft /sec,

v � 65.5i � 34.7j ft /sec

[vy � (vy)0 � gt]    vy � 80 sin 35� � 32.2(2.50) � �34.7 ft /sec

[vx � (vx)0]    vx � 80 cos 35� � 65.5 ft /sec

[vy
2 � (vy)0

2 � 2g(y � y0)]  02 � (80 sin 35�)2 � 2(32.2)(h � 6)  h � 38.7 ft

(x, y) � (164.0, 20) ft

[x � x0 � (vx)0t]  x � 0 � 80 cos 35�(2.50) � 164.0 ft

[y � y0 � (vy)0t � 12 gt2]  20 � 6 � 80 sin 35�(tƒ) � 12 (32.2)tƒ
2  tƒ � 2.50 s

y � 20 ft:
20 � 8 � 28 feet,

[y � y0 � (vy)0t � 12 gt2]   y � 6 � 80 sin 35�(1.984) � 12 (32.2)(1.984)2 � 33.7 ft

[x � x0 � (vx)0t]   100 � 30 � 0 � (80 cos 35�)t   t � 1.984 sec

v0 � 75 ft/sec.

tƒ

� � 35�

v0 � 80 ft /sec,
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Helpful Hints

� Neglecting aerodynamic drag is a
poor assumption for projectiles with
relatively high initial velocities,
large sizes, and low weights. In a
vacuum, a baseball thrown with an
initial speed of 100 ft/sec at 
above the horizontal will travel about
311 feet over a horizontal range. In
sea-level air, the baseball range is
about 200 ft, while a typical beachball
under the same conditions will travel
about 10 ft.

45�

� As an alternative approach, we could
find the time at apex where 
then use that time in the y-displacement
equation. Verify that the trajectory
apex occurs over the 100-ft horizon-
tal portion of the athletic field.

vy � 0,

�

�



2/65 A rocket runs out of fuel in the position shown and
continues in unpowered flight above the atmosphere.
If its velocity in this position was 600 mi/hr, calcu-
late the maximum additional altitude h acquired and
the corresponding time t to reach it. The gravita-
tional acceleration during this phase of its flight is

Problem 2/65

2/66 A particle moves in the x-y plane with a y-component
of velocity in feet per second given by with t
in seconds. The acceleration of the particle in the
x-direction in feet per second squared is given by

with t in seconds. When 
and Find the equation of the path of the
particle and calculate the magnitude of the velocity
v of the particle for the instant when its x-coordinate
reaches 18 ft.

2/67 A roofer tosses a small tool to the ground. What min-
imum magnitude of horizontal velocity is required
to just miss the roof corner B? Also determine the
distance d.

Problem 2/67

v0

A

B

C

1.2 m

2.4 m

0.9 m

3 m

d

v0

vx � 0.
t � 0, y � 2 ft, x � 0,ax � 4t

vy � 8t

30°

v = 600 mi/hr

Vertical

30.8 ft /sec2.
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PROBLEMS

(In the following problems where motion as a projectile in
air is involved, neglect air resistance unless otherwise
stated and use g � 9.81 m/s2 or g � 32.2 ft/sec2.)

Introductory Problems

2/59 At time the position vector of a particle mov-
ing in the x-y plane is By time 
its position vector has become Deter-
mine the magnitude of its average velocity during
this interval and the angle made by the average
velocity with the positive x-axis.

2/60 A particle moving in the x-y plane has a velocity at
time given by and at its
velocity has become Calculate the
magnitude aav of its average acceleration during the
0.1-s interval and the angle it makes with the 
x-axis.

2/61 The velocity of a particle moving in the x-y plane is
given by at time Its aver-
age acceleration during the next 0.02 s is 
Determine the velocity v of the particle at 
and the angle between the average-acceleration
vector and the velocity vector at 

2/62 A particle which moves with curvilinear motion has
coordinates in millimeters which vary with the time t
in seconds according to and 
Determine the magnitudes of the velocity v and
acceleration a and the angles which these vectors
make with the x-axis when 

2/63 The x-coordinate of a particle in curvilinear motion
is given by where x is in feet and t is in
seconds. The y-component of acceleration in feet per
second squared is given by If the particle has
y-components and when find
the magnitudes of the velocity v and acceleration a
when Sketch the path for the first 
2 seconds of motion, and show the velocity and accel-
eration vectors for 

2/64 The y-coordinate of a particle in curvilinear motion
is given by where y is in inches and t is
in seconds. Also, the particle has an acceleration in
the x-direction given by If the ve-
locity of the particle in the x-direction is 
when calculate the magnitudes of the velocity
v and acceleration a of the particle when 
Construct v and a in your solution.

t � 1 sec.
t � 0,

4 in. /sec
ax � 12t in. /sec2.

y � 4t3 � 3t,

t � 2 sec.

t � 2 sec.

t � 0, � 4 ft /secẏy � 0
ay � 4t.

x � 2t3 � 3t,

t � 2 s.

y � 3t2 � 13t3.x � 2t2 � 4t

t � 3.67 s.
�

t � 3.67 s
4i � 6j m /s2.

t � 3.65 s.6.12i � 3.24j m /s

�

4.3i � 5.4j m /s.
t � 6.1 s4i � 5j m /s,t � 6 s

�

vav

5.1i � 0.4j m.
t � 0.02 s,r � 5i m.

t � 0,



2/68 Prove the well-known result that, for a given launch
speed the launch angle yields the maxi-
mum horizontal range R. Determine the maximum
range. (Note that this result does not hold when
aerodynamic drag is included in the analysis.)

2/69 Calculate the minimum possible magnitude u of the
muzzle velocity which a projectile must have when
fired from point A to reach a target B on the same
horizontal plane 12 km away.

Problem 2/69

2/70 The center of mass G of a high jumper follows the
trajectory shown. Determine the component , mea-
sured in the vertical plane of the figure, of his take-
off velocity and angle if the apex of the trajectory
just clears the bar at A. (In general, must the mass
center G of the jumper clear the bar during a suc-
cessful jump?)

Problem 2/70

3.5′

3′
v0

A

G

3.5′

θ

�

v0

A

u

B

12 km

� � 45�v0,
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Representative Problems

2/71 The quarterback Q throws the football when the
receiver R is in the position shown. The receiver’s
velocity is constant at 10 yd/sec, and he catches
passes when the ball is 6 ft above the ground. If the
quarterback desires the receiver to catch the ball 
2.5 sec after the launch instant shown, determine
the initial speed and angle required.

Problem 2/71

2/72 The water nozzle ejects water at a speed 
at the angle Determine where, relative

to the wall base point B, the water lands. Neglect the
effects of the thickness of the wall.

Problem 2/72

2/73 Water is ejected from the water nozzle of Prob. 2/72
with a speed For what value of the
angle will the water land closest to the wall after
clearing the top? Neglect the effects of wall thick-
ness and air resistance. Where does the water land?

2/74 A football player attempts a 30-yd field goal. If he is
able to impart a velocity u of 100 ft/sec to the ball,
compute the minimum angle for which the ball will
clear the crossbar of the goal. (Hint: Let .)

Problem 2/74

u

30 yd

θ
10′

m � tan �
�

�

v0 � 45 ft /sec.

60′
Not to scale

1′
A 3′θ

v0

B

� � 40�.ft /sec
v0 � 45

v0

vRR
Q

θ

7′

30 yd

�v0



2/78 The basketball player likes to release his foul shots
with an initial speed What value(s)
of the initial angle will cause the ball to pass
through the center of the rim? Neglect clearance
considerations as the ball passes over the front por-
tion of the rim.

Problem 2/78

2/79 A projectile is launched with an initial speed of 200
m/s at an angle of with respect to the horizontal.
Compute the range R as measured up the incline.

Problem 2/79

2/80 A rock is thrown horizontally from a tower at A and
hits the ground 3.5 s later at B. The line of sight
from A to B makes an angle of with the horizon-
tal. Compute the magnitude of the initial velocity u
of the rock.

Problem 2/80

A

50°

u

B

50�

R
60°

20°A

B

200 m/s

60�

7′

θ

10′

13′ 9′′

v0

�

v0 � 23.5 ft /sec.
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2/75 The pilot of an airplane carrying a package of mail to
a remote outpost wishes to release the package at
the right moment to hit the recovery location A.
What angle with the horizontal should the pilot’s
line of sight to the target make at the instant of re-
lease? The airplane is flying horizontally at an alti-
tude of 100 m with a velocity of 200 km/h.

Problem 2/75

2/76 During a baseball practice session, the cutoff man A
executes a throw to the third baseman B. If the ini-
tial speed of the baseball is what
angle is best if the ball is to arrive at third base at
essentially ground level?

Problem 2/76

2/77 If the tennis player serves the ball horizontally
calculate its velocity v if the center of the

ball clears the 36-in. net by 6 in. Also find the dis-
tance s from the net to the point where the ball hits
the court surface. Neglect air resistance and the
effect of ball spin.

Problem 2/77

39′s

36″ 

8.5′

A
θ

v

(� � 0),

v0

7′
θ B

A

150′ 

�

v0 � 130 ft /sec,

θ

200 km/h

100 m

A

�



2/81 The muzzle velocity of a long-range rifle at A is 
Determine the two angles of elevation 

which will permit the projectile to hit the mountain
target B.

Problem 2/81

2/82 A projectile is launched with a speed 
from the floor of a 5-m-high tunnel as shown. Deter-
mine the maximum horizontal range R of the projec-
tile and the corresponding launch angle .

Problem 2/82

2/83 A projectile is launched from point A with the initial
conditions shown in the figure. Determine the slant
distance s which locates the point B of impact. Cal-
culate the time of flight t.

Problem 2/83

v0 = 120 m/s

 = 40°θ 20°

B

s
A

800 m

5 m

A
θ

v0 = 25 m/s

�

v0 � 25 m /s

B

5 km

1.5 km
2θ

1θ

u
u

A

�400 m /s.
u �

Article 2/4 Problems 51

2/84 A team of engineering students is designing a cata-
pult to launch a small ball at A so that it lands in the
box. If it is known that the initial velocity vector
makes a angle with the horizontal, determine the
range of launch speeds for which the ball will land
inside the box.

Problem 2/84

2/85 Ball bearings leave the horizontal trough with a ve-
locity of magnitude u and fall through the 70-mm-
diameter hole as shown. Calculate the permissible
range of u which will enable the balls to enter the
hole. Take the dashed positions to represent the lim-
iting conditions.

Problem 2/85

2/86 A horseshoe player releases the horseshoe at A with
an initial speed Determine the range
for the launch angle for which the shoe will strike
the 14-in. vertical stake.

Problem 2/86

v0 = 36 ft/sec

40′

A
B

θ
3

14″

�

v0 � 36 ft /sec.

120 mm
20 mm

80 mm

70 mm

u

v0

12″
30°A

8″

12′ 2′

v0

30�


