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Lecture Seven 

Phasors and The Basic Elements 

7.1 Phasors  

          Sinusoids are easily expressed in terms of phasors, which are more convenient to work with 

than sine and cosine functions.  

A phasor is a complex number that represents the amplitude and phase of a sinusoid. 

         A complex number z can be written in rectangular form as  

              z = x + jy                                                                                                             (7.1a)  

where j =  √−1; x is the real part of z; y is the imaginary part of z.  

The complex number z can also be written in polar or exponential form as  

              z = r ∠𝝋 = rejφ                                                                                                    (7.1b)  

where r is the magnitude of z, and φ is the phase of z. We notice that z can be represented in three 

ways:  

         z = x + jy                     Rectangular form  

         z = r ∠φ                       Polar form  

         z = r ejφ                        Exponential form                                                                  (7.2)  

          The relationship between the rectangular form and the polar form is shown below, where 

the x axis represents the real part and the y axis represents the imaginary part of a complex 

number. Given x and y, we can get r and φ as  

        𝒓 =  √𝒙𝟐 +  𝒚𝟐   ,  𝝋 =  𝐭𝐚𝐧−𝟏 𝒚

𝒙
                                                                             (7.3a)  

On the other hand, if we know r and φ, we can obtain x and y as  

        x = r cos φ,  y = r sin φ                                                                                             (7.3b)  

Thus, z may be written as  

         z = x + jy = r ∠𝝋 = r (cos φ + j sin φ)                                                                     (7.4) 

Addition and subtraction of complex numbers are better performed in rectangular form; 

multiplication and division are better done in polar form. Given the complex numbers  

z = x + jy = r φ,   z1 = x1 + jy1 = r1 ∠φ1,     z2 = x2 + jy2 = r2 ∠φ1 
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The following operations are important.   

Addition:                            z1 + z2 = (x1 + x2) + j (y1 + y2)                                               (7.5a) 

 Subtraction:                       z1 − z2 = (x1 − x2) + j (y1 − y2)                                              (7.5b)  

Multiplication:                   z1z2 = r1r2 ∠φ1 +  φ2                                                           (7.5c)  

Division:                            
𝑧1

𝑧2
 =  

𝑟1

𝑟2
  ∠𝜑1 −  𝜑2                                                              (7.5d)  

Reciprocal:                        
1

𝑧
  =  

1

𝑟
  ∠ − φ1                                                                      (7.5e)  

Square Root:                     √𝑧   =   √𝑟 ∠𝜑/2                                                                    (7.5f) 

Complex Conjugate:         z∗ = x − jy = r ∠− φ = r e −jφ                                                   (7.5g)  

Note that from Eq. (7.5e),  

                                           1/ j = − j                                                                                 (7.5h)  

           The idea of phasor representation is based on Euler’s identity. In general,  

                        e ±jφ = cos φ ± j sin φ                                                                                  (7.6) 

                        cos φ = Re(ejφ )                                                                                         (7.7a)  

                        sin φ = Im(ejφ )                                                                                          (7.7b)  

where Re and Im stand for the real part of and the imaginary part of.  

Given a sinusoid v(t) = Vm cos(ωt + φ), we use Eq. (7.7a) to express v(t) as  

                     v(t)= Vm cos(ωt + φ) = Re(Vm ej(ωt+φ) )= Re(Vm ejφ ejωt )                            (7.8)  

Thus,  

                     v(t) = Re(V ejωt )                                                                                           (7.9)  

where  

                     V = Vm ejφ = Vm ∠φ                                                                                    (7.10)  

V is thus the phasor representation of the sinusoid v(t), as we said earlier. In other words, a 

phasor is a complex representation of the magnitude and phase of a sinusoid.  

One way of looking at Eqs. (7.9) and (7.10) is to consider the plot in Fig. 7.1(a) and (b) of the 

sinor V ejωt = Vm ej(ωt+φ) on the complex plane. As time increases, the sinor rotates on a circle of 

radius Vm at an angular velocity ω in the counterclockwise direction, as shown in. In other words, 

the entire complex plane is rotating at an angular velocity of ω. We may regard v(t) as the 

projection of the sinor Ve jωt on the real axis, as shown in Fig. 7.1(b). The value of the sinor at 

time t = 0 is the phasor V of the sinusoid v(t). The sinor may be regarded as a rotating phasor.  
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Figure 7.1 Representation of Vejωt : (a) sinor rotating counterclockwise, (b) its projection on the real axis, as a function 

of time. 

For example, phasors V = Vm ∠φ and I = Im ∠−θ are graphically represented in Fig. 7.2. Such a 

graphical representation of phasors is known as a phasor diagram. 

 

Figure 7.2 A Phasor diagram showing V = Vm ∠φ and I = Im ∠−θ. 

By suppressing the time factor, we transform the sinusoid from the time domain to the phasor 

domain. This transformation is summarized as follows:  

               

   v(t) = Vm cos(ωt + φ)    ⇐⇒         V = Vm ∠φ                                                              (7.11)  

 

 

Note that in Eq. (7.11) the frequency (or time) factor e jωt is suppressed, and the frequency is not 

explicitly shown in the phasor-domain representation because ω is constant. However, the 

response depends on ω. For this reason, the phasor domain is also known as the frequency 

domain.  

(Time-domain                                       (Phasor-domain  

representation)                                       representation) 
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From Eqs. (7.9) and (7.10), v(t)= Re(V ejωt ) = Vm cos (ωt + φ), so that  

          
𝒅𝒗

𝒅𝒕
  = −ωVm sin(ωt + φ) = ωVm cos(ωt +φ+90◦) = Re(ωVme jωt ejφ ej90◦) = Re(jωV ejωt)           (7.12)   

This shows that the derivative v(t) is transformed to the phasor domain as jωV  

        dv/ dt (Timedomain)     ⇐⇒      jωV (Phasor domain)                                                      (7.13)  

Similarly, the integral of v(t) is transformed to the phasor domain as V/jω  

         ∫ vdt (Timedomain)      ⇐⇒    V/jω (Phasor domain)                                                     (7.14) 

 

Example 7.1: Transform these sinusoids to phasors:  

(a) v =− 4 sin(30t + 50 ◦ )  

(b) i = 6 cos(50t − 40 ◦ )  

Solution: (a) Since − sin A = cos(A + 90 ◦ ), 

                    v =− 4 sin(30t + 50 ◦ ) = 4 cos(30t + 50 ◦ + 90 ◦ ) = 4 cos(30t + 140 ◦ ) 

 The phasor form of v is       

                                       V = 4 ∠140 ◦  

(b) i = 6 cos(50t − 40 ◦ ) has the phasor  

                                        I = 6 ∠−40 ◦  

 

Example 7.2: Find the sinusoids represented by these phasors:  

(a) V = j8e −j 20 ◦  

(b) I =− 3 + j4  

Solution:  

(a) Since j = 1∠90◦,  

                          V = j8 ∠−20◦ = (1 ∠90◦) (8 ∠−20◦)  

                                                = 8 ∠(90◦ −20◦) = 8 ∠70◦ V 

 Converting this to the time domain gives  

                                          v(t) = 8 cos(ωt + 70◦) V  

(b) I =− 3 + j 4 = 5 ∠126.87◦. Transforming this to the time domain gives  

                   i(t) = 5 cos(ωt + 126.87◦) A 
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7.2 Phasor Relationships for Circuit Elements  

          Now that we know how to represent a voltage or current in the phasor or frequency 

domain, one may legitimately ask how we apply this to circuits involving the passive elements R, 

L, and C. What we need to do is to transform the voltage-current relationship from the time 

domain to the frequency domain for each element. Again, we will assume the passive sign 

convention.  

 

Resistor 

      We begin with the resistor. If the current through a resistor R is i = Im cos(ωt + φ), the voltage 

across it is given by Ohm’s law as  

             v = iR = R Im cos(ωt + φ)                                                                                   (7.15)  

The phasor form of this voltage is  

             V = R Im ∠φ                                                                                                        (7.16)  

But the phasor representation of the current is I = Im ∠φ. Hence,  

             V = RI                                                                                                                 (7.17) 

showing that the voltage-current relation for the resistor in the phasor domain continues to be 

Ohm’s law, as in the time domain. Figure 7.3 illustrates the voltage-current relations of a resistor. 

We should note from Eq. (7.17) that voltage and current are in phase, as illustrated in the phasor 

diagram in Fig. 7.4. 

                           

Figure 7.3 Voltage-current relations for a resistor in the:              Figure 7.4 Phasor diagram for the resistor. 

           (a) time domain, (b) frequency domain. 

 

 



    

       

Al-Mustaqbal University College                             6/15                                  https://www.uomus.edu.iq/ 

Class: Second 

Subject: Electrical Circuits 2 

Lecturer: Dr. Hamza Mohammed Ridha Al-Khafaji 

E-mail: hamza.alkhafaji@mustaqbal-college.edu.iq   

Inductor 

For the inductor L, assume the current through it is i = Im cos(ωt + φ). The voltage across the 

inductor is  

             v = L di/dt = − ω L Im sin (ωt + φ)                                                                    (7.18)  

Recall that −sinA = cos(A + 90 ◦ ). We can write the voltage as  

             v = ω L Im cos(ωt + φ + 90◦)                                                                              (7.19)  

which transforms to the phasor  

             V = ω L Im ej(φ+90◦) = ω L Im ejφ ej90◦ = ω LIm ∠φ ej90◦                                       (7.20)  

But Im φ = I, and from Eq. (7.19), ej90◦ = j. Thus,  

             V = jω L I                                                                                                           (7.21)  

showing that the voltage has a magnitude of ωLI m and a phase of φ+90◦. The voltage and current 

are 90◦ out of phase. Specifically, the current lags the voltage by 90◦. Figure 7.5 shows the 

voltage-current relations for the inductor. Figure 7.6 shows the phasor diagram. 

                               

Figure 7.5 Voltage-current relations for an inductor in the:                                 Figure 7.6 Phasor diagram for the inductor; I lags V.  

               (a) time domain, (b) frequency domain. 

 

Capacitor 

          For the capacitor C, assume the voltage across it is v = Vm cos(ωt + φ). The current through 

the capacitor is  

          i = C dv/dt                                                                                                              (7.22) 

By following the same steps as we took for the inductor or by applying Eq. (7.13) on Eq. (7.22), 

we obtain  

         I = jωCV ⇒ V = I / jωC                                                                                         (7.23)  
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showing that the current and voltage are 90◦ out of phase. To be specific, the current leads the 

voltage by 90◦. Figure 7.7 shows the voltage-current relations for the capacitor; Fig. 7.8 gives the 

phasor diagram.  

                     

Figure 7.7 Voltage-current relations for a capacitor in the:               Figure 7.8 Phasor diagram for the capacitor; I leads V. 

                   (a) time domain, (b) frequency domain. 

 

Example 7.3: The voltage v = 12 cos(60t + 45◦) is applied to a 0.1-H inductor. Find the steady-

state current through the inductor.  

Solution: For the inductor, V = jωLI, where ω = 60 rad/s and V = 12 ∠45◦ V. Hence  

                 𝐼 =  
𝑉

𝑗𝜔𝐿
  =  

12 ∠45°

𝑗60 × 0.1 
 =  

12 ∠45°

6 ∠90°
  =  2 ∠ − 45° 𝐴  

Converting this to the time domain,  

                i(t)= 2 cos(60t − 45◦) A  

 

7.3 Impedance and Admittance  

In the preceding section, we obtained the voltage-current relations for the three passive elements 

as  

               V = RI, V = jω L I, V = I /jω C                                                                       (7.24)  

These equations may be written in terms of the ratio of the phasor voltage to the phasor current as  

                V /I = R, V /I = jωL, V /I = 1/ jωC                                                                 (7.25)  

From these three expressions, we obtain Ohm’s law in phasor form for any type of element as 

                Z = V/I or V = ZI                                                                                            (7.26)  

where Z is a frequency-dependent quantity known as impedance, measured in ohms.  

The impedance Z of a circuit is the ratio of the phasor voltage V to the phasor current I, 

measured in ohms (Ω).  
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          The impedance represents the opposition which the circuit exhibits to the flow of sinusoidal 

current. Although the impedance is the ratio of two phasors, it is not a phasor, because it does not 

correspond to a sinusoidally varying quantity. The impedances of resistors, inductors, and 

capacitors can be readily obtained from Eq. (7.25). we notice that ZL = jωL and ZC =− j/ωC. 

Consider two extreme cases of angular frequency. When ω = 0 (i.e., for dc sources), ZL = 0 and 

ZC →∞ , confirming what we already know— that the inductor acts like a short circuit, while the 

capacitor acts like an open circuit. When ω →∞ (i.e., for high frequencies), ZL →∞ and ZC = 0, 

indicating that the inductor is an open circuit to high frequencies, while the capacitor is a short 

circuit.  

As a complex quantity, the impedance may be expressed in rectangular form as  

                     Z = R + jX                                                                                                   (7.27)  

where R = Re Z is the resistance and X = Im Z is the reactance. The reactance X may be positive 

or negative. The impedance, resistance, and reactance are all measured in ohms. The impedance 

may also be expressed in polar form as  

                      Z = | Z | ∠θ                                                                                                 (7.28)  

Comparing Eqs. (7.27) and (7.28), we infer that  

                      Z = R + jX = | Z | ∠θ                                                                                 (7.29)  

Where           | Z | = √𝑹 𝟐  +  𝑿𝟐  , θ = 𝐭𝐚𝐧−𝟏 𝑿

𝑹
                                                                (7.30)  

and  

                      R = | Z | cos θ,     X = | Z | sin θ                                                                 (7.31)  

It is sometimes convenient to work with the reciprocal of impedance, known as admittance. 

       The admittance Y is the reciprocal of impedance, measured in siemens (S).  

The admittance Y of an element (or a circuit) is the ratio of the phasor current through it to the 

phasor voltage across it, or  

          Y = 1/ Z = I /V                                                                                                       (7.32)  

The admittances of resistors, inductors, and capacitors can be obtained from Eq. (7.29). As a 

complex quantity, we may write Y as  

          Y = G + jB                                                                                                              (7.33)  
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where G = Re Y is called the conductance and B = Im Y is called the susceptance. Admittance, 

conductance, and susceptance are all expressed in the unit of siemens (or mhos).  From Eqs. 

(7.27) and (7.33),  

          G + jB = 
𝟏

𝑹 + 𝒋𝑿
                                                                                                        (7.34)  

the real and imaginary parts gives  

          𝐆 =  
𝑹

𝑹𝟐  + 𝑿𝟐 
  , 𝐁 =

− 𝑿

𝑹𝟐  + 𝑿𝟐
                                                                                    (7.35)  

showing that G ≠1/R as it is in resistive circuits. Of course, if X = 0, then G = 1/R.  

 

Example 7.4: Find v(t) and i(t) in the circuit shown in Fig. 7.9. 

Solution: From the voltage source 10 cos 4t , ω = 4, Vs = 10 ∠0 ◦ V  The impedance is 

              𝑍 =  5 +  
1

 𝑗𝜔𝐶
 =  5 +  

1

𝑗4 × 0.1
  =  5 − 𝑗2.5 𝛺  

Hence the current  

𝐼 =  
𝑉𝑠

𝑍
  =  

10 ∠0°

5 − 𝑗 2.5
  =  

10(5 +  𝑗2.5)

52 + 2.52  
  

                = 1.6 + j0.8 = 1.789 ∠26.57◦ A               (7.4.1)  

The voltage across the capacitor is    

            𝑉 =  𝐼 𝑍𝐶 =  
𝐼

𝑗𝜔𝐶
  =  

1.789 ∠26.57°

𝑗4 × 0.1
  

                 = 
1.789 ∠26.57°

0.4∠𝟗𝟎°
 = 4.47 ∠− 63.43◦ V           (7.4.2)  

Converting I and V in Eqs. (7.4.1) and (7.4.2) to the time domain, we get  

           i(t) = 1.789 cos(4t + 26.57 ◦ ) A  

          v(t) = 4.47 cos(4t − 63.43 ◦ ) V  

Notice that i(t) leads v(t) by 90 ◦ as expected. 

 

 

 

 

 

 

Fig. 7.9 
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7.4 Kirchhoff’s Laws in The Frequency Domain  

           We cannot do circuit analysis in the frequency domain without Kirchhoff’s current and 

voltage laws. Therefore, we need to express them in the frequency domain.  

For KVL, let v1, v2,...,vn be the voltages around a closed loop. Then  

              v1 + v2 +···+ vn = 0                                                                                             (7.36)  

In the sinusoidal steady state, each voltage may be written in cosine form, so that Eq. (7.36) 

becomes  

              Vm1 cos(ωt + θ1) + Vm2 cos(ωt + θ2) +···+Vmn cos(ωt + θn) = 0                      (7.37)  

This can be written as  

              Re(Vm1 ejθ1 ejωt ) + Re(Vm2 ejθ2 ejωt ) +···+ Re(Vmn ejθn ejωt ) = 0  

or  

              Re[(Vm1 ejθ1 + Vm2 ejθ2 +···+ Vmn ejθn ) ejωt ] = 0                                              (7.37)  

If we let Vk = Vmk ejθk , then  

              Re[(V1 + V2 +···+ Vn ) ejωt] = 0                                                                         (7.38)  

Since e jωt ≠ 0,  

              V1 + V2 +···+Vn = 0                                                                                           (7.39)  

indicating that Kirchhoff’s voltage law holds for phasors. 

By following a similar procedure, we can show that Kirchhoff’s current law holds for phasors. If 

we let i1, i2,...,in be the current leaving or entering a closed surface in a network at time t , then  

              i1 + i2 +···+in = 0                                                                                                 (7.40)  

If I1, I2,..., In are the phasor forms of the sinusoids i1 , i2 ,..., in , then  

              I1 + I2 +···+In = 0                                                                                               (7.41)  

which is Kirchhoff’s current law in the frequency domain. Once we have shown that both KVL 

and KCL hold in the frequency domain, it is easy to do many things, such as impedance 

combination, nodal and mesh analyses, superposition, and source transformation. 
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7.5 Impedance Combinations  

          Consider the N series-connected impedances shown in Fig. 7.10. The same current I flows 

through the impedances. Applying KVL around the loop gives  

           V = V 1 + V 2 +···+ V N = I (Z 1 + Z 2 +···+ Z N )                                           (7.42)  

The equivalent impedance at the input terminals is  

           Zeq  = Z 1 + Z 2 +···+ Z N                                                                                  (7.43)  

showing that the total or equivalent impedance of series-connected impedances is the sum of the 

individual impedances. This is similar to the series connection of resistances. 

We can use voltage-division relationship to calculate voltage across each impedance, then                                                                                                                                                                         

            𝑽𝑵  =  
𝑽𝒁𝑵

𝒁𝟏+𝒁𝟐+⋯+𝒁𝑵
                                                                                                (7.44) 

 

Figure 7.10 N impedances in series. 

           In the same manner, we can obtain the equivalent impedance or admittance of the N 

parallel-connected impedances shown in Fig. 7.11. The voltage across each impedance is the 

same. Applying KCL at the top node,  

             𝑰 =  𝑰𝟏  +  𝑰𝟐  +··· +𝑰𝑵  =  𝑽 ( 
𝟏

𝒁𝟏
  +  

𝟏

𝒁𝟐
+··· + 

𝟏

𝒁𝑵
 )                                        (7.45)  

The equivalent impedance is  

             
𝟏

𝒁𝒆𝒒
  =  

𝑰

𝑽
  =  

𝟏

𝒁𝟏
  +  

𝟏

𝒁𝟐
  +··· + 

𝟏

𝒁𝑵
                                                                      (7.46)  

and the equivalent admittance is  

             Yeq = Y1 + Y2 +···+YN                                                                                     (7.47)  

This indicates that the equivalent admittance of a parallel connection of admittances is the sum of 

the individual admittances. 

When N = 2, as shown in Fig. 7.12, the currents in the impedances are 

             𝑰𝟏 =  
𝒁𝟐

𝒁𝟏 + 𝒁𝟐
𝑰, 𝑰𝟐 =  

𝒁𝟏

𝒁𝟏+ 𝒁𝟐
  𝑰                                                                          (7.48)  
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which is the current-division principle. 

             

                            Figure 7.11 N impedances in parallel.                    Figure 7.12 Current division. 

           The delta-to-wye and wye-to-delta transformations that we applied to resistive circuits are 

also valid for impedances. With reference to Fig. 7.13, the conversion formulas are as follows. 

 

Figure 7.13 Superimposed Y and Δ networks. 

Y -Δ Conversion:  

           𝒁𝒂 =  
𝒁𝟏𝒁𝟐 + 𝒁𝟐𝒁𝟑 + 𝒁𝟑𝒁𝟏

𝒁𝟏
   

           𝒁𝒃 =  
𝒁𝟏 𝒁𝟐 + 𝒁𝟐 𝒁𝟑 + 𝒁𝟑 𝒁𝟏 

𝒁𝟐
  

           𝒁𝒄 =  
𝒁𝟏 𝒁𝟐 + 𝒁𝟐 𝒁𝟑 + 𝒁𝟑 𝒁𝟏

𝒁𝟑
                                                                                       (7.49)  

Δ-Y Conversion:  

           𝒁𝟏 =  
𝒁𝒃 𝒁𝒄

𝒁𝒂 + 𝒁𝒃 + 𝒁𝒄
   

           𝒁𝟐 =  
𝒁𝒄 𝒁𝒂

𝒁𝒂 + 𝒁𝒃 + 𝒁𝒄
   

           𝒁𝟑 =  
𝒁𝒂𝒁𝒃

𝒁𝒂 + 𝒁𝒃 + 𝒁𝒄
                                                                                                   (7.50)  

A delta or wye circuit is said to be balanced if it has equal impedances in all three branches.  
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When a Δ-Y circuit is balanced, Eqs. (7.49) and (7.50) become  

           ZΔ= 3ZY   or   ZY = 
𝟏

𝟑
  ZΔ                                                                                (7.51)  

where ZY = Z1 = Z2 = Z3 and ZΔ = Za = Zb = Zc.  

 

Example 7.5: Find the input impedance of the circuit in Fig. 7.14. Assume that the circuit 

operates at ω = 50 rad/s. 

 

 

 

 

Figure 7.14 For Example 7.5. 

Solution:  

Let  

Z1 = Impedance of the 2-mF capacitor  

Z2 = Impedance of the 3-Ω resistor in series with the 10-mF capacitor  

Z3 = Impedance of the 0.2-H inductor in series with the 8-Ω resistor  

Then  

    𝑍1 =  
1

𝑗𝜔𝐶
  =  

1

𝑗 50 × 2 × 10−3 
  = − 𝑗10 𝛺   

    𝑍2 =  3 +  
1

 𝑗𝜔𝐶
 =  3 +  

1

𝑗 50 × 10 × 10−3 
  =  (3 −  𝑗2) Ω  

    Z3 = 8 + jωL = 8 + j50 × 0.2 = (8 + j 10) Ω  

The input impedance is  

    𝑍𝑖𝑛 =  𝑍1 +  𝑍2 || 𝑍3 =  − 𝑗 10 +  
(3 − 𝑗2)(8 + 𝑗10)

11 + 𝑗 8
   

             =  − 𝑗 10 +  
(44 + 𝑗14)(11 − 𝑗8)

112  + 82 
  = − 𝑗 10 +  3.22 −  𝑗1.07 Ω   

Thus,  

       Zin = 3.22 − j11.07 Ω 
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Example 7.6: Determine vo(t ) in the circuit in Fig. 7.15. 

 

Figure 7.15 For Example 7.6. 

Solution: To do the analysis in the frequency domain, we must first transform the time domain 

circuit in Fig. 7.15 to the phasor-domain equivalent in Fig. 7.16. The transformation produces 

 

Figure 7.16 The frequency-domain equivalent of the circuit in Fig. 7.15. 

        vs = 20 cos(4t − 15◦)   ⇒    Vs   = 20 ∠−15◦ V, ω = 4  

                                10 mF   ⇒    
1

𝑗𝜔𝐶
  = 

1 

𝑗4 × 10 × 10−3 
 = − j 25 Ω  

                                      5H    ⇒   jωL = j 4 × 5 = j 20 Ω 

Let   

Z1 = Impedance of the 60-Ω resistor  

Z2 = Impedance of the parallel combination of the 10-mF capacitor and the 5-H inductor Then Z 

1 = 60 Ω and 

       Z2 = − j 25||j 20 =  
− 𝑗25 × 𝑗 20

−𝑗25 + 𝑗 20
  = j 100 Ω 

By the voltage-division principle,  

      𝑉𝑜 =  
𝑍2

𝑍1 + 𝑍2
  𝑉𝑠 =  

𝑗100

60 + 𝑗 100
  (20 − 15°)  

             =   (0.8575 ∠30.96◦) (20 ∠− 15◦) = 17.15 ∠15.96◦ V.  

We convert this to the time domain and obtain  

          vo (t) = 17.15 cos(4t + 15.96◦)V 
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Example 7.7: Find current I in the circuit in Fig. 7.17. 

 

Figure 7.17 For Example 7.7. 

Solution:  

The Δ network connected to nodes a, b, and c can be converted to the Y network of Fig. 7.17. We 

obtain the Y impedances as follows using Eq. (7.50):  

            Zan = 
𝒋𝟒(𝟐 − 𝒋𝟒)

𝒋𝟒 + 𝟐 − 𝒋𝟒 + 𝟖
  = 

𝟒(𝟒 + 𝒋𝟐)

𝟏𝟎
  = (1.6 + j0.8) Ω 

            Zbn = 
𝒋𝟒(𝟖)

𝟏𝟎
  = j3.2 Ω,          Zcn = 

𝟖(𝟐 − 𝒋𝟒)

𝟏𝟎
  = (1.6 − j 3.2) Ω 

 

Figure 7.18 The circuit in Fig. 7.17 after Δ-to-Y transformation. 

The total impedance at the source terminals is  

           Z = 12 + Zan + (Zbn − j3) || (Zcn + j6 + 8) 

              = 12 + 1.6 + j0.8 + (j0.2) || (9.6 + j2.8)  

              = 13.6 + j0.8 + 
𝒋 𝟎.𝟐(𝟗.𝟔 + 𝒋𝟐.𝟖)

𝟗.𝟔 + 𝒋𝟑 
  

              = 13.6 + j1 = 13.64 ∠4.204◦ 

The desired current is  

           I = 
𝑽

𝒁
  = 

𝟓𝟎 ∠𝟎°

𝟏𝟑.𝟔𝟒 ∠𝟒.𝟐𝟎𝟒°
  = 3.666 ∠− 4.204◦ A 

            

 


