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Lecture Five 

Capacitors & Inductors 

5.1 Introduction 

          So far we have limited our study to resistive circuits. In this lecture, we shall introduce two 

new and important passive linear circuit elements: the capacitor and the inductor. Unlike 

resistors, which dissipate energy, capacitors and inductors do not dissipate but store energy, 

which can be retrieved at a later time. For this reason, capacitors and inductors are called storage 

elements. We begin by introducing capacitors and describing how to combine them in series or in 

parallel. Then, we do the same for inductors.  

5.2 Capacitors 

          A capacitor is a passive element designed to store energy in its electric field. Besides 

resistors, capacitors are the most common electrical components. Capacitors are used extensively 

in electronics, communications, computers, and power systems. For example, they are used in the 

tuning circuits of radio receivers and as dynamic memory elements in computer systems. 

A capacitor consists of two conducting plates separated by an insulator (or dielectric).  

In many practical applications, the plates may be aluminum foil while the dielectric may be air, 

ceramic, paper, or mica. 

The amount of charge stored, represented by q, is directly proportional to the applied voltage v so 

that 

               q = Cv                                                                                                                       (5.1) 

where C, the constant of proportionality, is known as the capacitance of the capacitor. The unit of 

capacitance is the farad (F), in honor of the English physicist Michael Faraday (1791–1867). 

From Eq. (5.1), we may derive the following definition. 

Capacitance is the ratio of the charge on one plate of a capacitor to the voltage difference between 

the two plates, measured in farads (F). 

Note from Eq. (5.1) that 1 farad = 1 coulomb/volt.  
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          Although the capacitance C of a capacitor is the ratio of the charge q per plate to the 

applied voltage v, it does not depend on q or v. It depends on the physical dimensions of the 

capacitor. The capacitance is given by 

               𝑪 =
𝝐𝑨

𝒅
                                                                                                                (5.2) 

where A is the surface area of each plate, d is the distance between the plates, and ε is the 

permittivity of the dielectric material between the plates.  Typically, capacitors have values in the 

picofarad (pF) to microfarad (μF) range. Figure 5.1 shows the circuit symbols for fixed and 

variable capacitors.  

 

Figure 5.1 Circuit symbols for capacitors: (a) fixed capacitor, (b) variable capacitor. 

To obtain the current-voltage relationship of the capacitor, we take the derivative of both sides of 

Eq. (5.1). Since 

               i =dq/dt                                                                                                                     (5.3) 

differentiating both sides of Eq. (5.1) gives 

               i = C dv/dt                                                                                                                (5.4) 

The voltage-current relation of the capacitor can be obtained by integrating both sides of Eq. 

(5.4). We get 

               𝒗 =
𝟏

𝑪
  ∫ 𝒊

𝒕

−∞
𝒅𝒕                                                                                                      (5.5) 

or 

               𝒗 =
𝟏

𝑪
 ∫ 𝒊 

𝒕

𝒕𝟎
 𝒅𝒕 +  𝒗(𝒕𝟎)                                                                                       (5.6) 

where v(t0) = q(t0)/C is the voltage across the capacitor at time t0. 

Eq. (5.6) shows that capacitor voltage depends on the past history of the capacitor current. Hence, 

the capacitor has memory—a property that is often exploited. 

The instantaneous power delivered to the capacitor is 

               𝒑 =  𝒗𝒊 =  𝑪𝒗 
𝒅𝒗

𝒅𝒕
                                                                                                    (5.7) 

The energy stored in the capacitor is therefore 
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               𝒘 =
𝟏

𝟐
𝑪𝒗𝟐   or   𝒘 =

𝒒𝟐

𝟐𝑪
                                                                                         (5.8) 

Eq. (5.8) represents the energy stored in the electric field that exists between the plates of the 

capacitor. This energy can be retrieved, since an ideal capacitor cannot dissipate energy 

We should note the following important properties of a capacitor: 

1. Note from Eq. (5.4) that when the voltage across a capacitor is not changing with time (i.e., dc 

voltage), the current through the capacitor is zero. Thus, 

A capacitor is an open circuit to dc. 

2. The voltage on the capacitor must be continuous. 

The voltage on a capacitor cannot change abruptly. 

The capacitor resists an abrupt change in the voltage across it. 

3. The ideal capacitor does not dissipate energy. It takes power from the circuit when storing 

energy in its field and returns previously stored energy when delivering power to the circuit. 

4. A real, nonideal capacitor has a parallel-model leakage resistance. The leakage resistance may 

be as high as 100 MΩ and can be neglected for most practical applications.  

Example 5.1: 

(a) Calculate the charge stored on a 3-pF capacitor with 20 V across it. 

(b) Find the energy stored in the capacitor. 

Solution: 

               (a) Since q = Cv,                   q = 3 × 10−12 × 20 = 60 pC 

               (b) The energy stored is        𝒘 =
𝟏

𝟐
𝑪𝒗𝟐 =

𝟏

𝟐
× 𝟑 × 𝟏𝟎−𝟏𝟐 × 𝟒𝟎𝟎 = 𝟔𝟎𝟎 𝐩𝐉 

Example 5.2: 

The voltage across a 5-μF capacitor is v(t) = 10 cos 6000t V Calculate the current through it. 

Solution: 

By definition, the current is 

                        𝒊(𝒕)  =  𝑪
𝒅𝒗

𝒅𝒕
 =  𝟓 ×  𝟏𝟎−𝟔  

𝒅

𝒅𝒕
(𝟏𝟎 𝒄𝒐𝒔 𝟔𝟎𝟎𝟎𝒕) 

                                 = −5 × 10−6 × 6000 × 10 sin 6000t = −0.3 sin 6000t A 
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5.3 Series and Parallel Capacitors 

          We know from resistive circuits that series-parallel combination is a powerful tool for 

reducing circuits. This technique can be extended to series-parallel connections of capacitors, 

which are sometimes encountered. We desire to replace these capacitors by a single equivalent 

capacitor Ceq. First we obtain the equivalent capacitor Ceq of N capacitors in parallel, 

 
Figure 5.2 (a) Parallel-connected N capacitors, (b) equivalent circuit for the parallel capacitors. 

               Ceq = C1 + C2 + C3 +· · ·+CN                                                                                 (5.9) 

The equivalent capacitance of N parallel-connected capacitors is the sum of the individual 

capacitances. 

We observe that capacitors in parallel combine in the same manner as resistors in series. 

Now we will obtain Ceq of N capacitors connected in series 

 

Figure 5.3 (a) Series-connected N capacitors, (b) equivalent circuit for the series capacitor. 

Where           
𝟏

𝑪𝒆𝒒
 =

𝟏

𝑪𝟏
 +

𝟏

𝑪𝟐
 +

𝟏

𝑪𝟑
 +· · · +

𝟏

𝑪𝑵
                                                                    (5.10) 

The equivalent capacitance of series-connected capacitors is the reciprocal of the sum of the 

reciprocals of the individual capacitances. 

Note that capacitors in series combine in the same manner as resistors in parallel. For N = 2 (i.e., 

two capacitors in series), Eq. (5.10) becomes 

            
𝟏

𝑪𝒆𝒒
 =

𝟏

𝑪𝟏
 +

𝟏

𝑪𝟐
          Or                𝑪𝒆𝒒  =

𝑪𝟏𝑪𝟐

𝑪𝟏 + 𝑪𝟐
                                                        (5.11)                                                                             
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Example 5.3: 

Find the equivalent capacitance seen between terminals a and b of the circuit in Fig. 5.4. 

 
Figure 5.4 For Example 5.3. 

Solution: 

The 20-μF and 5-μF capacitors are in series; their equivalent capacitance is 

               
𝟐𝟎 × 𝟓

𝟐𝟎 + 𝟓
 =  𝟒 𝝁𝑭 

This 4-μF capacitor is in parallel with the 6-μF and 20-μF capacitors; their combined capacitance 

is 

               4 + 6 + 20 = 30 μF 

This 30-μF capacitor is in series with the 60-μF capacitor. Hence, the equivalent capacitance for 

the entire circuit is 

               𝑪𝒆𝒒  =
𝟑𝟎 × 𝟔𝟎

𝟑𝟎 + 𝟔𝟎 
=  𝟐𝟎 𝝁𝑭 

5.4 First Order RC Circuit 

          Now that we have considered the three passive elements (resistors, capacitors, and 

inductors), we are prepared to consider circuits that contain various combinations of two or three 

of the passive elements. 

          We carry out the analysis of RC and RL circuits by applying Kirchhoff’s laws, as we did 

for resistive circuits. The only difference is that applying Kirchhoff’s laws to purely resistive 

circuits results in algebraic equations, while applying the laws to RC and RL circuits produces 

differential equations, which are more difficult to solve than algebraic equations. 

The differential equations resulting from analyzing RC and RL circuits are of the first order. 

Hence, the circuits are collectively known as first-order circuits. 

     A first-order circuit is characterized by a first-order differential equation. 

    The two types of first-order circuits and the two ways of exciting them add up to the four 

possible situations we will study in this chapter.  
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5.5 The Source-Free RC Circuit 

          A source-free RC circuit occurs when its dc source is suddenly disconnected. The energy 

already stored in the capacitor is released to the resistors. 

 

Figure 5.5 A source-free RC circuit. 

          Consider a series combination of a resistor and an initially charged capacitor, as shown in 

Fig. 5.5. Our objective is to determine the circuit response, which, for pedagogic reasons, we 

assume to be the voltage v(t) across the capacitor. Since the capacitor is initially charged, we can 

assume that at time t = 0, the initial voltage is 

              v(0) = V0                                                                                                                  (5. 12) 

with the corresponding value of the energy stored as 

               𝒘(𝟎)  =
𝟏

𝟐
𝑪𝑽𝟎

𝟐                                                                                                        (5.13) 

Applying KCL at the top node of the circuit in Fig. 5.5, 

               iC + iR = 0                                                                                                                (5.14) 

By definition, iC = C dv/dt and iR = v/R. Thus,             

               𝑪
𝒅𝒗

𝒅𝒕
 +

𝒗

𝑹
 =  𝟎                                                                                                         (5.15) 

This is a first-order differential equation, since only the first derivative of v is involved. After 

solve it, the capacitor voltage is  

               𝒗(𝒕)  =  𝑽𝟎𝒆−𝒕/𝑹𝑪                                                                                                   (5.16) 

         This shows that the voltage response of the RC circuit is an exponential decay of the initial 

voltage. Since the response is due to the initial energy stored and the physical characteristics of 

the circuit and not due to some external voltage or current source, it is called the natural response 

of the circuit. 

The natural response of a circuit refers to the behavior (in terms of voltages and currents) of the 

circuit itself, with no external sources of excitation. 
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The natural response is illustrated graphically in Fig. 5.6. Note that at t = 0, we have the correct 

initial condition as in Eq. (5.12). As t increases, the voltage decreases toward zero. The rapidity 

with which the voltage decreases is expressed in terms of the time constant, denoted by the lower 

case Greek letter tau, τ. 

The time constant of a circuit is the time required for the response to decay by a factor of 1/e or 

36.8 percent of its initial value. 

 

Figure 5.6 The voltage response of the RC circuit. 

This implies that at t = τ , Eq. (5.16) becomes 

               𝑽𝟎𝒆−𝝉/𝑹𝑪  =  𝑽𝟎𝒆−𝟏  =  𝟎. 𝟑𝟔𝟖𝑽𝟎 

or 

               τ = RC                                                                                                                     (5.17) 

In terms of the time constant, Eq. (5.16) can be written as 

             𝒗(𝒕)  =  𝑽𝟎𝒆−𝒕/𝝉                                                                                                       (5.18) 

Observe from Eq. (5.17) that the smaller the time constant, the more rapidly the voltage 

decreases, that is, the faster the response. This is illustrated in Fig. 5.7. A circuit with a small time 

constant gives a fast response in that it reaches the steady state (or final state) quickly due to 

quick dissipation of energy stored, whereas a circuit with a large time constant gives a slow 

response because it takes longer to reach steady state. At any rate, whether the time constant is 

small or large, the circuit reaches steady state in five time constants. 

 

Figure 5.7 Plot of v/V0 = e−t/τ for various values of the time constant. 
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      Figure 5.8 For Example 5.4. 

 

With the voltage v(t) in Eq. (5.18), we can find the current iR(t), 

               𝒊𝑹(𝒕)  =
𝒗(𝒕)

𝑹
 =

𝑽𝟎

𝑹
 𝒆−𝒕/𝝉                                                                                         (5.19) 

The power dissipated in the resistor is 

               𝒑(𝒕) =  𝒗. 𝒊𝑹  =
𝑽𝟎

𝟐

𝑹
 𝒆−𝟐𝒕/𝝉                                                                                       (5.20) 

The energy absorbed by the resistor up to time t is 

               𝒘𝑹(𝒕)  =
𝟏

𝟐
𝑪𝑽𝟎

𝟐  (𝟏 −  𝒆−𝟐𝒕/𝝉 ),   𝝉 =  𝑹𝑪                                                            (5.21) 

 Notice the energy that was initially stored in the capacitor is eventually dissipated in the resistor. 

In summary: 

 

 

 

          With these two items, we obtain the response as the capacitor voltage vC(t) = v(t) = v(0)e−t/τ 

. Once the capacitor voltage is first obtained, other variables (capacitor current iC, resistor voltage 

vR, and resistor current iR) can be determined. In finding the time constant τ = RC, R is often the 

Thevenin equivalent resistance at the terminals of the capacitor; that is, we take out the capacitor 

C and find R = RTh at its terminals.     

Example 5.4: The switch in the circuit in Fig. 5.8 has been 

closed for a long time, and it is opened at t = 0. Find v(t) for 

t ≥ 0. Calculate the initial energy stored in the capacitor. 

Solution: 

For t < 0, the switch is closed; the capacitor is an open 

circuit to dc, as represented in Fig. 5.9(a). Using voltage division 

               𝒗𝑪(𝒕)  =
𝟗

𝟗 + 𝟑
(𝟐𝟎)  =  𝟏𝟓 𝑽, 𝒕 < 𝟎 

Since the voltage across a capacitor cannot change 

instantaneously, the voltage across the capacitor at t = 0− is the 

same at t = 0, or 

               vC(0) = V0 = 15 V 

The Key to Working with a Source - free RC Circuit is Finding: 

1. The initial voltage v(0) = V0 across the capacitor. 

2. The time constant τ . 
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For t > 0, the switch is opened, and we have the RC circuit shown in Fig. 5.9(b). [Notice that the 

RC circuit in Fig. 5.9(b) is source free; the independent source in Fig. 5.8 is needed to provide V0 

or the initial energy in the capacitor.] The 1-Ω and 9-Ω resistors in series give 

               Req = 1 + 9 = 10 Ω 

The time constant is 

               τ = ReqC = 10 × 20 × 10−3 = 0.2 s 

Thus, the voltage across the capacitor for t ≥ 0 is 

               v(t) = vC(0)e−t/τ = 15e−t/0.2 V 

or            v(t) = 15e−5t V 

The initial energy stored in the capacitor is 

               𝒘𝑪(𝟎)  =
𝟏

𝟐
𝑪𝒗𝑪

𝟐(𝟎)  =
𝟏

𝟐
 ×  𝟐𝟎 ×  𝟏𝟎−𝟑  ×  𝟏𝟓𝟐  =  𝟐. 𝟐𝟓 𝑱 

5.6 Step Response of an RC Circuit 

          When the dc source of an RC circuit is suddenly applied, the voltage or current source can 

be modeled as a step function, and the response is known as a step response.  

The step response of a circuit is its behavior when the excitation is the step function, which may 

be a voltage or a current source. 

The step response is the response of the circuit due to a sudden application of a dc voltage or 

current source. 

 

Figure 5.10 An RC circuit with voltage step input. 

          Consider the RC circuit in Fig. 5.10(a) which can be replaced by the circuit in Fig. 5.10(b), 

where Vs is a constant, dc voltage source. Again, we select the capacitor voltage as the circuit 

response to be determined. 

          We assume an initial voltage V0 on the capacitor, although this is not necessary for the step 

response. Since the voltage of a capacitor cannot change instantaneously, 

                v(0−) = v(0+) = V0                                                                                                  (5.22) 

Figure 5.9 For Example 5.4: 

(a) t < 0, (b) t > 0. 
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where v(0−) is the voltage across the capacitor just before switching and v(0+) is its voltage 

immediately after switching. Applying KCL, we have 

               𝑪
𝒅𝒗

𝒅𝒕
 +

𝒗 – 𝑽𝒔.𝒖(𝒕)

𝑹
 =  𝟎                                                                                             (5.23) 

where v is the voltage across the capacitor.  

Thus, 

               𝑣(𝑡)  = {
𝑉0                                       , 𝑡 <  0

𝑉𝑠 +  (𝑉0 −  𝑉𝑠)𝑒−𝑡/𝜏 , 𝑡 > 0
                                                               (5.24) 

        This is known as the complete response of the RC circuit to a 

sudden application of a dc voltage source, assuming the capacitor is 

initially charged. The reason for the term “complete” will become 

evident a little later. Assuming that Vs > V0, a plot of v(t) is shown 

in Fig. 5.11. 

If we assume that the capacitor is uncharged initially, we 

set V0 = 0 in Eq. (5.24) so that 

              𝑣(𝑡)  = {
  0                          , 𝑡 < 0

𝑉𝑠 (1 −  𝑒−𝑡/𝜏), 𝑡 > 0
                                                                             (5.25) 

          Rather than going through the derivations above, there is a systematic approach—or rather, 

a short-cut method—for finding the step response of an RC or RL circuit. Let us reexamine Eq. 

(5.24), which is more general than Eq. (5.25). It is evident that v(t) has two components. Thus, 

we may write 

               v = vf + vn                                                                                                               (5.26) 

          We know that vn is the natural response of the circuit, as discussed in Section 5.2. Now, vf 

is known as the forced response because it is produced by the circuit when an external “force” is 

applied (a voltage source in this case).  

The natural response or transient response is the circuit’s temporary response that will die out 

with time. 

The forced response or steady-state response is the behavior of the circuit a long time after an 

external excitation is applied. 

The complete response of the circuit is the sum of the natural response and the forced response. 

Therefore, we may write Eq. (5.24) as 

Figure 5.11 Response of an RC circuit with 

initially charged capacitor. 
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               v(t) = v(∞) + [v(0) − v(∞)]e−t/τ                                                                                (5.27) 

where v(0) is the initial voltage at t = 0+ and v(∞) is the final or steady state value. Thus, to find 

the step response of an RC circuit requires three things: 

 

           

 

Note that if the switch changes position at time t = t0 instead of at t = 0, there is a time delay in 

the response so that Eq. (5.27) becomes 

               v(t) = v(∞) + [v(t0) − v(∞)]e−(t−t0)/τ                                                                          (5.28) 

where v(t0) is the initial value at t = t+0 . Keep in mind that Eq. (5.27) or (5.28) applies only to 

step responses, that is, when the input excitation is constant. 

Example 5.5: The switch in Fig. 5.12 has been in position A for a long time. At t = 0, the switch 

moves to B. Determine v(t) for t > 0 and calculate its value at t = 1 s and 4 s. 

Solution: 

For t < 0, the switch is at position A. Since v is the 

same as the voltage across the 5-kΩresistor, the voltage 

across the capacitor just before t = 0 is obtained by 

voltage division as 

               𝒗(𝟎−)  =
𝟓

𝟓 + 𝟑
(𝟐𝟒)  =  𝟏𝟓 𝑽 

Using the fact that the capacitor voltage cannot change instantaneously, 

               v(0) = v(0−) = v(0+) = 15 V 

For t > 0, the switch is in position B. The Thevenin resistance connected to the capacitor is  

RTh = 4 kΩ, and the time constant is 

               τ = RThC = 4 × 103 × 0.5 × 10−3 = 2 s 

Since the capacitor acts like an open circuit to dc at steady state, v(∞) = 30 V. Thus, 

               v(t) = v(∞) + [v(0) − v(∞)]e−t/τ = 30 + (15 − 30)e−t/2 = (30 − 15e−0.5t ) V 

At t = 1, v(1) = 30 − 15e−0.5 = 20.902 V 

At t = 4, v(4) = 30 − 15e−2 = 27.97 V 

Notice that the capacitor voltage is continuous while the resistor current is not. 

1. The initial capacitor voltage v (0). 

2. The final capacitor voltage v (∞). 

3. The time constant τ. 

 

Figure 5.12 For Example 5.5. 
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5.7 Inductors 

          An inductor is a passive element designed to store energy in its magnetic field. Inductors 

find numerous applications in electronic and power systems. They are used in power supplies, 

transformers, radios, TVs, radars, and electric motors. 

          Any conductor of electric current has inductive properties and maybe regarded as an 

inductor. But in order to enhance the inductive effect, a practical inductor is usually formed into a 

cylindrical coil with many turns of conducting wire. 

          An inductor consists of a coil of conducting wire. 

          If current is allowed to pass through an inductor, it is found that the voltage across the 

inductor is directly proportional to the time rate of change of the current. Using the passive sign 

convention, 

                𝒗 =  𝑳
𝒅𝒊

𝒅𝒕
                                                                                                                  (5.29) 

where L is the constant of proportionality called the inductance of the inductor. The unit of 

inductance is the henry (H), named in honor of the American inventor Joseph Henry (1797–

1878). It is clear from Eq. (5.29) that 1 henry equals 1 volt-second per ampere. 

 

Inductance is the property whereby an inductor exhibits opposition to the change of current 

flowing through it, measured in henrys (H). 

       The inductance of an inductor depends on its physical dimension and construction.  

       Typical practical inductors have inductance values ranging from a few microhenrys (μH), as 

in communication systems, to tens of henrys (H) as in power systems. Inductors may be fixed or 

variable. The core may be made of iron, steel, plastic, or air. The terms coil and choke are also 

used for inductors. The circuit symbols for inductors are shown in Fig. 5.13. 

 

Figure 5.13 Circuit symbols for inductors: (a) air-core, (b) iron-core, (c) variable iron-core. 

The current-voltage relationship is obtained from Eq. (5.29) as 
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               𝒅𝒊 =
𝟏

𝑳
𝒗 𝒅𝒕 

Integrating gives            𝒊 =
𝟏

𝑳
  ∫ 𝒗(𝒕)

𝒕

𝒕𝟎
 𝒅𝒕 + 𝒊(𝒕𝟎)                                                                (5.30) 

where i(t0) is the total current for −∞ < t < t0 and i(−∞) = 0.  

The inductor is designed to store energy in its magnetic field. The energy stored can be obtained 

from Eqs. (5.29) and (5.30). The power delivered to the inductor is 

                                         p = vi = (L
𝒅𝒊

𝒅𝒕
) i                                                                                (5.31) 

The energy stored is         𝒘 =
𝟏

𝟐
𝑳𝒊𝟐                                                                                       (5.32) 

We should note the following important properties of an inductor. 

1. Note from Eq. (5.29) that the voltage across an inductor is zero when the current is constant. 

Thus,   An inductor acts like a short circuit to dc. 

2. An important property of the inductor is its opposition to the change in current flowing through 

it.  The current through an inductor cannot change instantaneously. 

However, the voltage across an inductor can change abruptly. 

3. Like the ideal capacitor, the ideal inductor does not dissipate energy. The energy stored in it 

can be retrieved at a later time.  

4. A practical, nonideal inductor has a significant resistive 

component, as shown in Fig. 5.14. This is due to the fact that the 

inductor is made of a conducting material such as copper, which 

has some resistance. This resistance is called the winding 

resistance Rw, and it appears in series with the inductance of the 

inductor. The presence of Rw makes it both an energy storage 

device and an energy dissipation device. The nonideal inductor also has a winding capacitance 

Cw due to the capacitive coupling between the conducting coils. Cw is very small and can be 

ignored in most cases, except at high frequencies. We will assume ideal inductors in this book. 

 

 

Figure 5.14 Circuit model  

for a practical inductor. 
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Example 5.6: The current through a 0.1-H inductor is i(t) = 10te−5t A. Find the voltage across the 

inductor and the energy stored in it. 

Solution: Since   v = Ldi/dt and L = 0.1 H, 

                             𝐯 =  𝟎. 𝟏 
𝒅

𝒅𝒕
(𝟏𝟎𝒕𝒆−𝟓𝒕 )  =  𝒆−𝟓𝒕 +  𝒕 (−𝟓)𝒆−𝟓𝒕 =  𝒆−𝟓𝒕 (𝟏 −  𝟓𝒕) 𝑽 

The energy stored is      𝒘 =
𝟏

𝟐
𝑳𝒊𝟐  =

𝟏

𝟐
(𝟎. 𝟏)𝟏𝟎𝟎𝒕𝟐 𝒆−𝟏𝟎𝒕  =  𝟓𝒕𝟐 𝒆−𝟏𝟎𝒕 𝑱 

Example 5.7: Consider the circuit in Fig. 5.15 (a). Under dc conditions, find:  

(a) i, vC, and iL, (b) the energy stored in the capacitor and 

inductor. 

Solution: (a) Under dc conditions, we replace the capacitor 

with an open circuit and the inductor with a short circuit, as in 

Fig. 5.15(b). It is evident from Fig. 5.15(b) that 

             i =  iL =  
𝟏𝟐

𝟏 + 𝟓
  =  𝟐 𝑨 

The voltage vC is the same as the voltage across the 5-Ω 

resistor. Hence, 

              vC  =  5×i  = 10 V 

(b)  The energy in the capacitor is 

             𝒘𝑪 =
𝟏

𝟐
𝑪𝒗𝑪

𝟐  =
𝟏

𝟐
(𝟏)(𝟏𝟎𝟐)  =  𝟓𝟎 𝑱 

and that in the inductor is 

             𝒘𝑳 =
𝟏

𝟐
𝑳𝒊𝑳

𝟐   = 𝟏𝟐(𝟐)(𝟐𝟐)  =  𝟒 𝑱   

5.8 Series and Parallel Inductors 

            Now that the inductor has been added to our list of passive elements, it is necessary to 

extend the powerful tool of series-parallel combination. We need to know how to find the 

equivalent inductance of a series-connected or parallel-connected set of inductors found in 

practical circuits. 

Consider a series connection of N inductors, as shown in Fig. 5.16(a), with the equivalent circuit 

shown in Fig. 5.16(b). The inductors have the same current through them. Applying KVL to the 

loop, 

Figure 5.15 For Example 5.7. 
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             v = v1 + v2 + v3 +· · ·+ vN                                                                                         (5.33) 

Substituting   vk = Lk di/dt   results in           v =   L1 
𝒅𝒊

𝒅𝒕
 + L2 

𝒅𝒊

𝒅𝒕
 + L3 

𝒅𝒊

𝒅𝒕
 +· · ·+LN 

𝒅𝒊

𝒅𝒕
 

                     =   (L1 + L2 + L3 +· · ·+LN) 
𝒅𝒊

𝒅𝒕
 =   (∑ 𝑳𝒌

𝑵
𝒌=𝟏 )

𝒅𝒊

𝒅𝒕
  = Leq 

𝒅𝒊

𝒅𝒕
                                 (5.34)                   

Where    Leq = L1 + L2 + L3 +· · ·+LN                                                                                   (5.35) 

 

Figure 5.16 (a) A series connection of N inductors, (b) equivalent circuit for the series inductors. 

The equivalent inductance of series-connected inductors is the sum of the individual 

inductances. 

Inductors in series are combined in exactly the same way as resistors in series. 

We now consider a parallel connection of N inductors, as shown in Fig. 5.17(a), with the 

equivalent circuit in Fig. 5.17(b). The inductors have the same voltage across them. Using KCL, 

               i = i1 + i2 + i3 +· · ·+iN                                                                                           (5.36) 

But      ik = 
𝟏

𝑳𝒌
∫ 𝒗𝒅𝒕 + 𝒊𝒌

𝒕

𝒕𝟎
(𝒕𝟎) ; hence, 

 

Figure 5.17 (a) A parallel connection of N inductors, (b) equivalent circuit for the parallel inductors. 

     i = 
𝟏

𝑳𝟏
∫ 𝒗𝒅𝒕 + 𝒊𝟏

𝒕

𝒕𝟎
(𝒕𝟎)  +

𝟏

𝑳𝟐
∫ 𝒗𝒅𝒕 + 𝒊𝟐

𝒕

𝒕𝟎
(𝒕𝟎) + · · ·+

𝟏

𝑳𝑵
∫ 𝒗𝒅𝒕 + 𝒊𝑵

𝒕

𝒕𝟎
(𝒕𝟎) 

       = (
1

𝐿1
+

1

𝐿2
+ ⋯ +

1

𝐿𝑁
) ∫ 𝒗𝒅𝒕 + 𝒊𝟏

𝒕

𝒕𝟎
(𝒕𝟎) + 𝒊𝟐(𝒕𝟎) + ⋯ + 𝒊𝑵(𝒕𝟎) = 

𝟏

𝑳𝒆𝒒
∫ 𝒗𝒅𝒕 + 𝒊(𝒕𝟎)

𝒕

𝒕𝟎
            (5.37) 

Where        
𝟏

𝑳𝒆𝒒
=

𝟏

𝑳𝟏
+

𝟏

𝑳𝟐
+ ⋯ +

𝟏

𝑳𝑵
                                                                                        (5.38) 
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The initial current i(t0) through Leq at t = t0 is expected by KCL to be the sum of the inductor 

currents at t0. Thus, according to Eq. (5.37), 

             i (t0) = i1(t0) + i2(t0)+· · ·+ iN(t0) 

According to Eq. (5.38), 

The equivalent inductance of parallel inductors is the reciprocal of the sum of the 

reciprocals of the individual inductances. 

Note that the inductors in parallel are combined in the same way as resistors in parallel. For two 

inductors in parallel (N = 2), Eq. (5.38) becomes 

               
𝟏

𝑳𝒆𝒒
=

𝟏

𝑳𝟏
+

𝟏

𝑳𝟐
  or 𝑳𝒆𝒒  =

𝑳𝟏𝑳𝟐

𝑳𝟏 + 𝑳𝟐
                                                                           (5.39) 

Example 5.8: Find the equivalent inductance of the circuit shown in Fig. 5.18. 

Solution: 

The 10-H, 12-H, and 20-H inductors are in series; 

thus, combining them gives a 42-H inductance. 

This 42-H inductor is in parallel with the 7-H 

inductor so that they are combined, to give 

𝟕 ×  𝟒𝟐

𝟕 +  𝟒𝟐
  =  𝟔 𝑯 

This 6-H inductor is in series with the 4-H and 8-H inductors. Hence, 

                 Leq = 4 + 6 + 8 = 18 H 

5.9 The Source-Free RL Circuit 

          Consider the series connection of a resistor and an inductor, as 

shown in Fig. 5.19. Our goal is to determine the circuit response, 

which we will assume to be the current i(t) through the inductor. We 

select the inductor current as the response in order to take advantage 

of the idea that the inductor current cannot change instantaneously. At 

t = 0, we assume that the inductor has an initial current I0, or 

             i(0) = I0                                                                                                                     (5.40) 

with the corresponding energy stored in the inductor as 

Figure 5.18 For Example 5.8. 

Figure 5.19 A source-free 

RL circuit. 
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             𝒘(𝟎)  =
𝟏

𝟐
𝑳𝑰𝟎

𝟐                                                                                                           (5.41) 

Applying KVL around the loop in Fig. 5.19, 

              vL + vR = 0                                                                                                               (5.42) 

But        vL = L
𝒅𝒊

𝒅𝒕
   and vR = i R. Thus,             L 

𝒅𝒊

𝒅𝒕
 + Ri = 0 

Rearranging terms and integrating gives 

             i(t) = I0e−Rt/L                                                                                                              (5.43) 

This shows that the natural response of the RL circuit is an exponential decay of the initial 

current. The current response is shown in Fig. 5.20. The time constant for the RL circuit is 

            𝝉 =
𝑳

𝑹
                                                                                                                        (5.44) 

with τ again having the unit of seconds. Thus, Eq. (5.43) may be written as 

             i(t) = I0e−t/τ                                                                                                                (5.45) 

With the current in Eq. (5.45), we can find the voltage across the resistor as 

            vR(t) = i×R = I0Re−t/τ                                                                                                  (5.46) 

The power dissipated in the resistor is 

             p = vR×i = 𝑰𝟎
𝟐 R e−2t/τ                                                                                                 (5.47) 

The energy absorbed by the resistor is 

            wR(t) =  
𝟏

𝟐
𝑳𝑰𝟎

𝟐 (1 − e−2t/τ )                                                                                            (5.48) 

Note that as t →∞, wR(∞) →  
𝟏

𝟐
𝑳𝑰𝟎

𝟐 , which is the same as wL(0), the initial energy stored in the 

inductor as in Eq. (5.41). Again, the energy initially stored in the inductor is eventually dissipated 

in the resistor.  

The Key to Working with a Source - free RL Circuit is to Find :  

1. The initial current i(0) = I0 through the inductor. 

2. The time constant τ of the circuit. 

 

 

 

 

 

Figure 5.20 The current  Response of the RL circuit. 
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Example 5.9: Assuming that i(0) = 10 A, calculate i(t) and ix (t) in the circuit in Fig. 5.21. 

Solution:  There are two ways we can solve this problem. One 

way is to obtain the equivalent resistance at the inductor 

terminals and then use Eq. (5.45). The other way is to start from 

scratch by using Kirchhoff’s voltage law.  

The equivalent resistance is the same as the Thevenin resistance 

at the inductor terminals. Because of the dependent source, we 

insert a voltage source with vo = 1 V at the inductor terminals a-b, as in Fig. 5.22(a).  

Applying KVL to the two loops results in 

          2(i1 − i2) + 1 = 0   ⇒  i1 − i2 = −1/2                                                                             (5.9.1) 

          6i2 − 2i1 − 3i1 = 0  ⇒  i2 = (5/6)i1                                                                                (5.9.2) 

Substituting Eq. (5.9.2) into Eq. (5.9.1) gives 

       i1 = −3 A, io = −i1 = 3 A 

Hence,   Req = RTh = vo/io =(1/3)Ω 

The time constant is τ =L/Req =
𝟏/𝟐

𝟏/𝟑
 = (3/2)s 

Thus, the current through the inductor is 

       i(t) = i(0)e−t/τ = 10e−(2/3)t A, t>0 

The voltage across the inductor is 

𝐯 =  𝐋
𝐝𝐢

𝐝𝐭
 =  𝟎. 𝟓(𝟏𝟎)(

−𝟐

𝟑
)𝐞−(𝟐/𝟑)𝐭  =  −

𝟏𝟎

𝟑
𝐞−(𝟐/𝟑)𝐭 𝐕 

Since the inductor and the 2-_ resistor are in parallel, 

         ix (t) = v/2 = −1.667e−(2/3)t A, t>0 

5.10 Step Response of an RL Circuit 

Consider the RL circuit in Fig. 5.23(a), which may be replaced by the circuit in Fig. 5.23(b). 

Again, our goal is to find the inductor current i as the circuit response. Rather than apply 

Kirchhoff’s laws. Let the response be the sum of the natural current and the forced current, 

           i = in + if                                                                                                                     (5.49) 

We know tht the natural response is always a decaying exponential, that is, 

           in = Ae−t/τ,          τ= L/R                                                                                              (5.50) 

where A is a constant to be determined. 

Figure 5.21 For Example 5.9. 

Figure 5.22 Solving the circuit. 
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The forced response is the value of the current a long time after the switch in Fig. 5.23(a) is 

closed. We know that the natural response essentially dies out after five time constants. At that 

time, the inductor becomes a short circuit, and the voltage across it is zero. The entire source 

voltage Vs appears across R. Thus, the forced response is 

          if =Vs/R                                                                                                                        (5.51) 

Substituting, Eqs. (5.49) and (5.50) into Eq. (5.48) gives 

          i = Ae−t/τ +Vs/R                                                                                                             (5.52) 

             

     

          We now determine the constant A from the initial value of i. Let I0 be the initial current 

through the inductor, which may come from a source other than Vs. Since the current through the 

inductor cannot change instantaneously, 

           i(0+) = i(0−) = I0                                                                                                            (5.53) 

Thus at t = 0, Eq. (5.52) becomes 

           I0 = A +VsR 

From this, we obtain A as 

           A = I0 –Vs/R 

Substituting for A in Eq. (5.52), we get 

           i(t) =Vs/R + (I0 –Vs /R )e−t/τ                                                                                       (5.54) 

This is the complete response of the RL circuit. It is illustrated in Fig.5.24. The response in Eq. 

(5.54) may be written as 

           i(t) = i(∞) + [i(0) − i(∞)]e−t/τ                                                                                       (5.55) 

where i(0) and i(∞) are the initial and final values of i. Thus, to find the step response of an RL 

circuit requires three things: 

1. The initial inductor current i(0) at t = 0+. 

Figure 5.23 An RL circuit with a step input voltage. 



    

      

Al-Mustaqbal University College                     20/21                         http://www.mustaqbal-college.edu.iq/ 

Class: Second 

Subject: Electrical Circuits 1 

Lecturer: Dr. Hamza Mohammed Ridha Al-Khafaji 

E-mail: hamza.alkhafaji@mustaqbal-college.edu.iq 
  

2. The final inductor current i(∞). 

3. The time constant τ. 

 

 

We obtain item 1 from the given circuit for t < 0 and items 2 and 3 from the circuit for t > 0. 

Once these items are determined, we obtain the response using Eq. (5.55). Keep in mind that this 

technique applies only for step responses. 

Again, if the switching takes place at time t = t0 instead of t = 0, Eq. (5.55) becomes 

           i(t) = i(∞) + [i(t0) − i(∞)]e−(t−t0)/τ                                                                                 (5.56) 

If I0 = 0, then 

         𝒊(𝒕)  = {
  𝟎                          , 𝒕 < 0
𝑽𝒔

𝑹
 (𝟏 −  𝒆−𝒕/𝝉), 𝒕 > 0

                                                                                 (5.57a) 

or      i(t) =
𝑽𝒔

𝑹
(1 − e−t/τ )u(t)                                                                                                    (5.57b) 

This is the step response of the RL circuit. The voltage across the inductor is obtained from Eq. 

(5.57) using v = Ldi/dt. We get 

          v(t) = L 
𝒅𝒊

𝒅𝒕
 = Vs  

𝑳

𝝉𝑹
  e−t/τ, τ   =  

𝑳

𝑹
       t>0 

or       v(t) = Vs e−t/τ u(t)                                                                                                         (5.58) 

Figure 5.25 shows the step responses in Eqs. (5.57) and (5.58). 

 

Figure 5.25 Step responses of an RL circuit with no initial  inductor current: (a) current response, (b) voltage response. 

Figure 5.24 Total response of the RL  circuit with initial inductor current I0. 
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Example 5.10: Find i(t) in the circuit in Fig. 5.26 for t > 0. Assume that the switch has been 

closed for a long time. 

 

 

 

 

 

 

Figure 5.26 For Example 5.10. 

Solution: When t < 0, the 3-Ω resistor is short-circuited, and the inductor acts like a short circuit. 

The current through the inductor at t = 0− (i.e., just before t = 0) is 

             i(0−) =10 / 2 = 5 A 

Since the inductor current cannot change instantaneously, 

             i(0) = i(0+) = i(0−) = 5 A 

When t > 0, the switch is open. The 2-Ω and 3-Ω resistors are in series, so that 

             i(∞) =   
𝟏𝟎 

𝟐 + 𝟑
   = 2 A 

The Thevenin resistance across the inductor terminals is 

             RTh = 2 + 3 = 5 Ω 

For the time constant, 

             τ =  
𝑳

𝑹𝑻𝒉
 = 

𝟏/𝟑

𝟓
 =1 / 15 s 

Thus, 

             i(t) = i(∞) + [i(0) − i(∞)]e−t/τ  = 2 + (5 − 2)e−15t = 2 + 3e−15t A,             t>0 

 

 


