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Lecture Eight 

Sinusoidal Steady-State Analysis 

8.1 Introduction 

          In lecture 7, we learned that the forced or steady-state response of circuits to sinusoidal 

inputs can be obtained by using phasors. We also know that Ohm’s and Kirchhoff’s laws are 

applicable to ac circuits. In this chapter, we want to see how nodal analysis, mesh analysis, 

Thevenin’s theorem, Norton’s theorem, superposition, and source transformations are applied in 

analyzing ac circuits. Since these techniques were already introduced for dc circuits, our major 

effort here will be to illustrate with examples.  

Analyzing ac circuits usually requires three steps.  

 

Step 1 is not necessary if the problem is specified in the frequency domain. In step 2, the analysis 

is performed in the same manner as dc circuit analysis except that complex numbers are involved. 

Having read lecture 7, we are adept at handling step 3. 

8.2 Nodal Analysis  

          The basis of nodal analysis is Kirchhoff’s current law. Since KCL is valid for phasors, we 

can analyze ac circuits by nodal analysis. The following examples illustrate this. 

Example 8.1: Find ix in the circuit of Fig. 8.1 using nodal analysis. 

 

 Fig. 8.1  

Steps to Analyze ac Circuits:  

1. Transform the circuit to the phasor or frequency domain.  

2. Solve the problem using circuit techniques (nodal analysis, mesh analysis, 

superposition, etc.).  

3. Transform the resulting phasor to the time domain.  
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Solution:  

We first convert the circuit to the frequency domain: 

        20 cos 4t   ⇒   20 ∠0◦, ω = 4 rad/s  

                 1H   ⇒    jωL = j 4  

                0.5H ⇒    jωL = j 2  

               0.1F   ⇒   
𝟏

𝒋𝝎𝑪
  = − j2.5  

Thus, the frequency-domain equivalent circuit is as shown in Fig. 8.2. 

 

Figure 8.2 Frequency-domain equivalent of the circuit in Fig. 8.1. 

        Applying KCL at node 1,  

        
𝟐𝟎 − 𝑽𝟏

𝟏𝟎
  =  

𝑽𝟏

−𝒋𝟐.𝟓
  +  

𝑽𝟏 − 𝑽𝟐

𝒋𝟒
   

or  

        (1 + j1.5) V1 + j2.5 V2 = 20                                                                                      (8.1.1)  

At node 2,  

         𝟐𝑰𝒙 +  
𝑽𝟏 − 𝑽𝟐

𝒋 𝟒
  =  

𝑽𝟐

𝒋𝟐
   

But Ix = V1 /− j 2.5. Substituting this gives  

         
𝟐𝑽𝟏

−𝒋𝟐.𝟓
  +  

𝑽𝟏 − 𝑽𝟐

𝒋𝟒
  =  

𝑽𝟐

𝒋 𝟐
   

By simplifying, we get  

          11 V1 + 15 V2 = 0                                                                                                     (8.1.2)  

Eqs. (8.1.1) and (8.1.2) can be put in matrix form as 

         [
𝟏 + 𝐣𝟏. 𝟓 𝐣𝟐. 𝟓

𝟏𝟏 𝟏𝟓
] [

𝐯𝟏

𝐯𝟐
] = [

𝟐𝟎
𝟎

]  

We obtain the determinants as  

        𝜟 = 𝑫 = |
𝟏 + 𝐣𝟏. 𝟓 𝐣𝟐. 𝟓

𝟏𝟏 𝟏𝟓
| = 𝟏𝟓 − 𝒋𝟓 
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       𝜟𝟏 = 𝑫𝟏 = |
𝟐𝟎 𝐣𝟐. 𝟓
𝟎 𝟏𝟓

| = 𝟑𝟎𝟎, 𝜟𝟐 = 𝑫𝟐 = |
𝟏 + 𝐣𝟏. 𝟓 𝟐𝟎

𝟏𝟏 𝟎
| = −𝟐𝟎𝟎     

        𝑽𝟏  =
𝑫𝟏

𝑫
 =  

𝟑𝟎𝟎

𝟏𝟓 − 𝒋𝟓
  =  𝟏𝟖. 𝟗𝟕 ∠𝟏𝟖. 𝟒𝟑° 𝑽  

        𝑽𝟐  =  
𝑫𝟐

𝑫
 =  

− 𝟐𝟐𝟎

𝟏𝟓 − 𝒋𝟓
  =  𝟏𝟑. 𝟗𝟏 ∠𝟏𝟗𝟖. 𝟑° 𝑽 

The current Ix is given by  

        𝑰𝒙 =  
𝑽𝟏

−𝒋𝟐.𝟓
  =  

𝟏𝟖.𝟗𝟕 ∠𝟏𝟖.𝟒𝟑°

𝟐.𝟓∠ − 𝟗𝟎°
  =  𝟕. 𝟓𝟗 ∠𝟏𝟎𝟖. 𝟒° 𝑨  

Transforming this to the time domain,  

         ix = 7.59 cos(4t + 108.4◦) A  

Example 8.2: Compute V1 and V2 in the circuit of Fig. 8.3. 

 

Figure 8.3 

Solution: Nodes 1 and 2 form a super-node as shown in Fig. 8.4. Applying KCL at the super-

node gives  

           𝟑 =  
𝑽𝟏

−𝒋 𝟑
  +  

𝑽𝟐

𝒋𝟔
  +

 𝑽𝟐

𝟏𝟐
   

or  

           36 = j4 V1 + (1 − j2) V2                                                                                              (8.2.1)  

But a voltage source is connected between nodes 1 and 2, so that 

 

Figure 8.4 A supernode in the circuit of Fig. 8.3. 

             V1 = V2 + 10 ∠45◦                                                                                                       (8.2.2)  
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Substituting Eq. (8.2.2) in Eq. (8.2.1) results in  

             36 − 40 ∠135◦ = (1 + j2) V2         ⇒           V2 = 31.41 ∠− 87.18◦ V  

From Eq. (8.2.2),  

             V1 = V2 + 10 ∠45◦ = 25.78 ∠−70.48◦ V 

8.3 Mesh Analysis  

Kirchhoff’s voltage law (KVL) forms the basis of mesh analysis. The validity of KVL for ac 

circuits was shown in Section 7.5 and is illustrated in the following examples.  

Example 8.3: Determine current Io in the circuit of Fig. 8.5 using mesh analysis.  

Solution:  

Applying KVL to mesh 1, we obtain  

          (8 + j 10 − j2) I1 − (− j2) I2 − j10 I3 = 0                                                                   (8.3.1) 

 

                                                                                Fig. 8.5 

For mesh 2,  

            (4 − j2 − j2) I2 − (− j2) I1 − (− j 2) I3 + 20 ∠90◦ = 0                                            (8.3.2)  

For mesh 3, I3 = 5. Substituting this in Eqs. (8.3.1) and (8.3.2), we get  

             (8 + j 8) I1 + j2 I2 = j50                                                                                        (8.3.3)  

             j2 I1 + (4 − j4) I2 = − j20 − j10                                                                            (8.3.4)  

Equations (8.3.3) and (8.3.4) can be put in matrix form as  

             [
𝟖 + 𝐣𝟖 𝐣𝟐

𝐣𝟐 𝟒 − 𝐣𝟒
] [

𝐈𝟏

𝐈𝟐
] = [

𝐣𝟓𝟎
−𝐣𝟑𝟎

] 

from which we obtain the determinants  

             𝜟 = 𝑫 = |
𝟖 + 𝐣𝟖 𝐣𝟐

𝐣𝟐 𝟒 − 𝐣𝟒
| = 𝟑𝟐(𝟏 + 𝒋)(𝟏 − 𝒋) + 𝟒 = 𝟔𝟖 

            𝜟𝟐 = 𝑫𝟐 = |
𝟖 + 𝐣𝟖 𝐣𝟓

𝐣𝟐 −𝐣𝟑𝟎
| = 𝟑𝟒𝟎 − 𝒋𝟐𝟒𝟎 = 𝟒𝟏𝟔. 𝟏𝟕∠ − 𝟑𝟓. 𝟐𝟐°,   
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            𝑰𝟐 =  
𝑫𝟐

𝑫
 =  

𝟒𝟏𝟔.𝟏𝟕∠−𝟑𝟓.𝟐𝟐°

𝟔𝟖
  =  𝟔. 𝟏𝟐 ∠ − 𝟑𝟓. 𝟐𝟐°𝑨 

The desired current is  

            Io = − I2 = 6.12 ∠144.78◦ A  

Example 8.4: Solve for Vo in the circuit in Fig. 8.6 using mesh analysis. 

 

Fig. 8.6 

Solution:  

As shown in Fig. 8.7, meshes 3 and 4 form a supermesh due to the current source between the 

meshes. For mesh 1, KVL gives  

             − 10 + (8 − j 2) I1 − (− j2) I2 – 8 I3 = 0  

or  

              (8 − j 2) I1 + j2 I2 – 8 I3 = 10                                                                                 (8.4.1)  

For mesh 2,  

               I2 = − 3                                                                                                                  (8.4.2)  

For the supermesh,  

               (8 − j 4) I3 – 8 I1 + (6 + j 5) I4 − j5 I2 = 0                                                            (8.4.3)  

Due to the current source between meshes 3 and 4, at node A,  

               I4 = I3 + 4                                                                                                              (8.4.4)  

Combining Eqs. (8.4.1) and (8.4.2),  

               (8 − j 2) I1 – 8 I3 = 10 + j6                                                                                    (8.4.5)  

Combining Eqs. (8.4.2) to (8.4.4), 

               − 8 I1 + (14 + j) I3 = − 24 − j35                                                                            (8.4.6) 
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Figure 8.7 Analysis of the circuit in Fig. 8.6. 

From Eqs. (8.4.5) and (8.4.6), we obtain the matrix equation  

             [
𝟖 − 𝐣𝟐 −𝟖

−𝟖 𝟏𝟒 + 𝐣
] [

𝐈𝟏

𝐈𝟑
] = [

𝟏𝟎 + 𝐣𝟔
−𝟐𝟒 − 𝐣𝟑𝟓

] 

from which we obtain the determinants  

             𝜟 = 𝑫 = |
𝟖 − 𝐣𝟐 −𝟖

−𝟖 𝟏𝟒 + 𝐣
| = 𝟏𝟏𝟐 + 𝐣 𝟖 − 𝐣𝟐𝟖 + 𝟐 − 𝟔𝟒 = 𝟓𝟎 − 𝒋𝟐𝟎 

             𝜟𝟏 = 𝑫𝟏 = |
𝟏𝟎 + 𝐣𝟔 −𝟖

−𝟐𝟒 − 𝐣𝟑𝟓 𝟏𝟒 + 𝐣
| = 𝟏𝟒𝟎 + 𝒋𝟏𝟎 + 𝒋 𝟖𝟒 − 𝟔 − 𝟏𝟗𝟐 − 𝒋 𝟐𝟖𝟎  

                                                                       = −𝟓𝟖 − 𝒋𝟏𝟖𝟔  

Current I1 is obtained as    

         𝑰𝟏 =  
𝑫𝟏

𝑫
 =  

−𝟓𝟖−𝒋𝟏𝟖𝟔

𝟓𝟎−𝒋𝟐𝟎
  =  𝟑. 𝟔𝟏𝟖 ∠𝟐𝟕𝟒. 𝟓° 𝑨 

We obtain the following determinants  

The required voltage Vo is  

            Vo = − j2 (I1 − I2) = − j2 (3.618 ∠274.5 ◦ + 3)  

                                             = − 7.2134 − j6.568 = 9.756 ∠222.32 ◦ V  

8.4 Superposition Theorem  

           Since ac circuits are linear, the superposition theorem applies to ac circuits the same way it 

applies to dc circuits. The theorem becomes important if the circuit has sources operating at 

different frequencies. In this case, since the impedances depend on frequency, we must have a 

different frequency-domain circuit for each frequency. The total response must be obtained by 

adding the individual responses in the time domain. It is incorrect to try to add the responses in 

the phasor or frequency domain. Why? Because the exponential factor e jωt is implicit in 

sinusoidal analysis, and that factor would change for every angular frequency ω. It would 
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therefore not make sense to add responses at different frequencies in the phasor domain. Thus, 

when a circuit has sources operating at different frequencies, one must add the responses due to 

the individual frequencies in the time domain.  

Example 8.5: Use the superposition theorem to find Io in the circuit in Fig. 8.5. 

Solution:  

Let  

                 Io = I'o + I"o                                                                                                     (8.5.1)  

where I'o and I"o are due to the voltage and current sources, respectively. To find I'o , consider 

the circuit in Fig. 8.8(a). If we let Z be the parallel combination of − j2 and 8 + j 10, then  

                 𝒁 =  
− 𝒋𝟐(𝟖 + 𝒋𝟏𝟎)

−𝟐𝒋 +𝟖 +𝒋𝟏𝟎
  =  𝟎. 𝟐𝟓 −  𝒋𝟐. 𝟐𝟓  

 

 

Figure 8.8 Solution of Example 8.5. 

 

 

and current I'o is  

                  𝐈′𝐨 =
 𝒋𝟐𝟎

𝟒 − 𝒋 𝟐 + 𝒁
  =  

𝒋 𝟐𝟎

𝟒.𝟐𝟓 − 𝒋 𝟒.𝟐𝟓
   

or              I'o = − 2.353 + j2.353                                                                                       (8.5.2) 

To get I"o , consider the circuit in Fig. 8.8(b). For mesh 1,  

                 (8 + j8) I1 − j10 I3 + j2 I2 = 0                                                                          (8.5.3)  

For mesh 2,  

                  (4 − j4) I2 + j2 I1 + j2 I3 = 0                                                                           (8.5.4)  

For mesh 3,  
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                   I3 = 5                                                                                                                (8.5.5)  

From Eqs. (8.5.4) and (8.5.5),  

                   (4 − j4) I2 + j2 I1 + j10 = 0  

Expressing I1 in terms of I2 gives  

                    I1 = (2 + j2) I2 − 5                                                                                         (8.5.6) 

Substituting Eqs. (8.5.5) and (8.5.6) into Eq. (8.5.3), we get  

                    (8 + j 8)[(2 + j 2) I2 − 5]− j50 + j2 I2 = 0  

or  

                     𝑰𝟐 =  
𝟗𝟎 − 𝒋𝟒𝟎

𝟑𝟒
  =  𝟐. 𝟔𝟒𝟕 −  𝒋𝟏. 𝟏𝟕𝟔  

Current I"o is obtained as  

                      I"o = − I2 = − 2.647 + j1.176                                                                      (8.5.7)  

From Eqs. (8.5.2) and (8.5.7), we write 

                      Io = I'o + I"o = − 5 + j3.529 = 6.12 ∠144.78◦ A 

which agrees with what we got in Example 10.3. It should be noted that applying the 

superposition theorem is not the best way to solve this problem. It seems that we have made the 

problem twice as hard as the original one by using superposition. However, in Example 10.6, 

superposition is clearly the easiest approach.  

Example 8.6: Find vo in the circuit in Fig. 8.9 using the superposition theorem. 

 

Figure 8.9 For Example 8.6. 

Solution:  

Since the circuit operates at three different frequencies (ω = 0 for the dc voltage source), one way 

to obtain a solution is to use superposition, which breaks the problem into single-frequency 

problems. So we let  

                vo = v1 + v2 + v3                                                                                                (8.6.1)  
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where v1 is due to the 5-V dc voltage source, v2 is due to the 10 cos 2t V voltage source, and v3 

is due to the 2 sin 5t A current source.  

          To find v1, we set to zero all sources except the 5-V dc source. We recall that at steady 

state, a capacitor is an open circuit to dc while an inductor is a short circuit to dc. There is an 

alternative way of looking at this. Since ω = 0, jωL = 0, 1/j ωC = ∞. Either way, the equivalent 

circuit is as shown in Fig. 8.10(a). By voltage division,  

− v1 = 
𝟏

𝟏 + 𝟒
 (𝟓) = 1V                                                                                         (8.6.2)  

To find v2, we set to zero both the 5-V source and the 2 sin5t current source and transform the 

circuit to the frequency domain.  

           10 cos 2t  ⇒ 10 ∠0◦ ,ω = 2 rad/s  

                     2H ⇒ jωL= j4 Ω  

                   0.1F ⇒ 1/ jωC = − j5 Ω 

The equivalent circuit is now as shown in Fig. 8.10(b). Let 

                 Z = − j5 || 4 = 
− 𝒋𝟓 × 𝟒

𝟒 − 𝒋𝟓
  = 2.439 − j1.951  

By voltage division,  

                 𝑽𝟐 =  
𝟏

𝟏 + 𝒋𝟒 + 𝒁 
 (𝟏𝟎 ∠𝟎°) =  

𝟏𝟎

𝟑.𝟒𝟑𝟗 + 𝐣 𝟐.𝟎𝟒𝟗
  =  𝟐. 𝟒𝟗𝟖 ∠ − 𝟑𝟎. 𝟕𝟗°   

In the time domain,  

                  v2 = 2.498 cos(2t − 30.79 ◦ )                                                                            (8.6.3) 

 

Figure 8.10 Solution of Example 8.6: (a) setting all sources to zero except the 5-V dc source, (b) setting all sources to 

zero except the ac voltage source, (c) setting all sources to zero except the ac current source. 

To obtain v3, we set the voltage sources to zero and transform what is left to the frequency 

domain.  

            2 sin 5t ⇒ 2 − 90◦, ω = 5 rad/s  

                   2H ⇒ jωL = j 10 Ω   

                 0.1F ⇒ 1/ jωC = − j2 Ω  
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The equivalent circuit is in Fig. 8.10(c). Let  

             𝒁𝟏 =  − 𝒋 𝟐 || 𝟒 =  
− 𝒋 𝟐 × 𝟒

𝟒 − 𝒋𝟐
  =  𝟎. 𝟖 −  𝒋 𝟏. 𝟔   

By current division,  

             𝑰𝟏 =  
𝒋𝟏𝟎

𝒋𝟏𝟎 + 𝟏 + 𝒁𝟏
  (𝟐 ∠ − 𝟗𝟎° ) 𝑨  

             𝑽𝟑 =  𝑰𝟏 ×  𝟏 =   
𝒋𝟏𝟎

𝟏.𝟖 + 𝒋𝟖.𝟒
  (− 𝒋𝟐)  =  𝟐. 𝟑𝟐𝟖 ∠ − 𝟕𝟕. 𝟗𝟏° 𝑽  

In the time domain,  

              v3 = 2.33 cos(5t − 80◦) = 2.33 sin(5t + 10◦) V                                                     (8.6.4)  

Substituting Eqs. (8.6.2) to (8.6.4) into Eq. (8.6.1), we have  

             vo (t ) = − 1 + 2.498 cos(2t − 30.79◦) + 2.33 sin(5t + 10◦) V  

8.5 Source Transformation  

          As Fig. 8.11 shows, source transformation in the frequency domain involves transforming a 

voltage source in series with an impedance to a current source in parallel with an impedance, or 

vice versa. As we go from one source type to another, we must keep the following relationship in 

mind:  

                 𝑽𝒔 =  𝒁 𝒔 𝑰 𝒔 ⇐⇒  𝑰𝒔 =
 𝑽𝒔

𝒁𝒔
                                                                               (8.1) 

 

Figure 8.11 Source transformation. 
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Example 8.7: Calculate Vx in the circuit of Fig. 8.12 using the method of source trans- formation. 

 

Figure 8.12 For Example 8.7. 

Solution:  

 We transform the voltage source to a current source and obtain the circuit in Fig. 8.13(a), where  

             𝑰𝒔 =  
𝟐𝟎 ∠− 𝟗𝟎°

𝟓
  =  𝟒 ∠ −  𝟗𝟎° =  − 𝒋𝟒 𝑨  

The parallel combination of 5-Ω resistance and (3+ j4) impedance gives  

              𝒁𝟏 =  
𝟓(𝟑 + 𝒋 𝟒)

𝟖 + 𝒋𝟒
  =  𝟐. 𝟓 +  𝒋𝟏. 𝟐𝟓 𝛀 

Converting the current source to a voltage source yields the circuit in Fig. 8.13(b), where  

              Vs = Is Z1 = − j4 (2.5 + j 1.25) =   5 −  j10 V  

By voltage division,  

                 𝑽𝒙 =  
𝟏𝟎

𝟏𝟎 + 𝟐.𝟓 + 𝒋 𝟏.𝟐𝟓 + 𝟒 − 𝒋𝟏𝟑
  (𝟓 −  𝒋 𝟏𝟎)  =  𝟓. 𝟓𝟏𝟗 ∠ −  𝟐𝟖° 𝑽 

 

Figure 8.13 Solution of the circuit in Fig. 8.12. 

8.6 Thevenin and Norton Equivalent Circuits  

          Thevenin’s and Norton’s theorems are applied to ac circuits in the same way as they are to 

dc circuits. The only additional effort arises from the need to manipulate complex numbers. The 

frequency-domain version of a Thevenin equivalent circuit is depicted in Fig. 8.14, where a linear 

circuit is replaced by a voltage source in series with an impedance. The Norton equivalent circuit 

is illustrated in Fig. 8.15, where a linear circuit is replaced by a current source in parallel with an 

impedance. Keep in mind that the two equivalent circuits are related as  
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              VTh = ZN IN,               ZTh = ZN                                                                                  (8.2)  

just as in source transformation. VTh is the open-circuit voltage while IN is the short-circuit 

current. 

          If the circuit has sources operating at different frequencies (see Example 8.6, for example), 

the Thevenin or Norton equivalent circuit must be determined at each frequency. This leads to 

entirely different equivalent circuits, one for each frequency, not one equivalent circuit with 

equivalent sources and equivalent impedances. 

        

                       Figure 8.14 Thevenin equivalent.                        Figure 8.15 Norton equivalent. 

Example 8.8: Obtain the Thevenin equivalent at terminals a-b of the circuit in Fig. 8.16. 

 
Figure 8.16 For Example 8.8. 

Solution:  

We find ZTh by setting the voltage source to zero. As shown in Fig. 8.17(a), the 8 Ω resistance is 

now in parallel with the− j6 reactance, so that their combination gives  

               𝒁𝟏 =  − 𝒋 𝟔 ||𝟖 =   
− 𝒋𝟔 × 𝟖

𝟖 − 𝒋𝟔
  =  𝟐. 𝟖𝟖 −  𝒋 𝟑. 𝟖𝟒 𝜴  

Similarly, the 4-Ω resistance is in parallel with the j12 reactance, and their combination gives                 

               𝒁𝟐 =  𝟒 ||𝒋𝟏𝟐 =  
𝒋𝟏𝟐 × 𝟒

𝟒 + 𝒋𝟏𝟐 
 =  𝟑. 𝟔 +  𝒋𝟏. 𝟐 𝜴 
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Figure 8.17 Solution of the circuit in Fig. 8.16: (a) finding ZTh, (b) finding VTh. 

The Thevenin impedance is the series combination of Z1 and Z2; that is,  

              ZTh = Z1 + Z2 = 6.48 − j2.64 Ω 

To find VTh , consider the circuit in Fig. 8.17(b). Currents I1 and I2 are obtained as 

               𝑰𝟏 =  
𝟏𝟐𝟎 ∠𝟕𝟓°

𝟖 − 𝒋𝟔
  𝑨,      𝑰𝟐 =  

𝟏𝟐𝟎 ∠𝟕𝟓°

𝟒 + 𝒋 𝟏𝟐
  𝑨  

Applying KVL around loop bcdeab in Fig. 8.17(b) gives  

                VTh − 4I2 + (− j 6)I1 = 0  

or  

                 𝑽𝑻𝒉 =  𝟒 𝑰𝟐 +  𝒋𝟔 𝑰𝟏 =  
𝟒𝟖𝟎 ∠𝟕𝟓°

𝟒 + 𝒋𝟏𝟐
  +  

𝟕𝟐𝟎 ∠𝟕𝟓° + 𝟗𝟎°

𝟖 − 𝒋𝟔
   

                           = 37.95 ∠3.43◦ + 72 ∠ 201.87◦  

                           = − 28.936 − j24.55 = 37.95 ∠220.31◦ V  

Example 8.9: Find the Thevenin equivalent of the circuit in Fig. 8.18 as seen from terminals a-b. 

 

Figure 8.18 For Example 8.9. 

Solution:  

           To find VTh, we apply KCL at node 1 in Fig. 8.19(a).  

          15 = Io + 0.5 Io    ⇒      Io = 10 A  

Applying KVL to the loop on the right-hand side in Fig. 8.19(a), we obtain  

           − Io (2 − j4) + 0.5I o (4 + j 3) + VTh = 0  
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or  

          VTh = 10 (2 − j4) – 5 (4 + j3) = − j55  

Thus, the Thevenin voltage is  

           VTh = 55 ∠− 90◦ V 

 

Fig. 8.19 Solution of the circuit in Fig. 8.18 

To obtain ZTh, we remove the independent source. Due to the presence of the dependent current 

source, we connect a 3-A current source (3 is an arbitrary value chosen for convenience here, a 

number divisible by the sum of currents leaving the node) to terminals a-b as shown in Fig. 

8.19(b). At the node, KCL gives  

            3 = Io + 0.5Io ⇒ Io = 2A  

Applying KVL to the outer loop in Fig. 8.19(b) gives  

            Vs = Io (4 + j3 + 2 − j4) = 2 (6 − j) 

The Thevenin impedance is  

             ZTh = Vs Is = 2(6 − j) 3 = 4 − j0.6667 Ω 

Example 8.10: Obtain current Io in Fig. 8.20 using Norton’s theorem. 

 

Figure 8.20 For Example 8.10. 
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Solution:  

Our first objective is to find the Norton equivalent at terminals a-b. ZN is found in the same way 

as ZTh. We set the sources to zero as shown in Fig. 8.21(a). As evident from the figure, the (8 − j 

2) and (10 + j4) impedances are short-circuited, so that  

               ZN = 5 Ω  

To get IN, we short-circuit terminals a -b as in Fig. 8.21(b) and apply mesh analysis. Notice that 

meshes 2 and 3 form a supermesh because of the current source linking them. For mesh 1,  

               − j40 + (18 + j 2) I1 − (8 − j 2) I2 − (10 + j 4) I3 = 0                                         (8.10.1)  

For the supermesh,  

               (13 − j2) I2 + (10 + j4) I3 − (18 + j2) I1 = 0                                                       (8.10.2) 

 

Figure 8.21 Solution of the circuit in Fig. 8.20: (a) finding ZN, (b) finding VN, (c) calculating Io. 

At node a, due to the current source between meshes 2 and 3,  

          I3 = I2 + 3                                                                                                                    (8.10.3)  

Adding Eqs. (8.10.1) and (8.10.2) gives  

            −j40 + 5I 2 = 0   ⇒   I2 = j8  

From Eq. (8.10.3),  

             I3 = I2 + 3 = 3 + j 8  

The Norton current is  

             IN = I3 = (3 + j 8)  

A Figure 8.21(c) shows the Norton equivalent circuit along with the impedance at terminals a-b. 

By current division,  

              𝑰𝒐 =  
𝟓

𝟓 + 𝟐𝟎 + 𝒋𝟏𝟓
  𝑰𝑵 =  

𝟑 + 𝒋 𝟖

𝟓 + 𝒋 𝟑
  =  𝟏. 𝟒𝟔𝟓 ∠𝟑𝟖. 𝟒𝟖° 𝑨 


