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Chapter Three 

Source Coding 

 

1- Sampling theorem: 

Sampling of the signals is the fundamental operation in digital communication. A 

continuous time signal is first converted to discrete time signal by sampling process. 

Also it should be possible to recover or reconstruct the signal completely from its 

samples. 

The sampling theorem state that: 

i- A band limited signal of finite energy, which has no frequency components higher 

than W Hz, is completely described by specifying the values of the signal at instant 

of time separated by 1/2W second and  

ii- A band limited signal of finite energy, which has no frequency components higher 

than W Hz, may be completely recovered from the knowledge of its samples taken 

at the rate of 2W samples per second. 

When the sampling rate is chosen  𝑓𝑠 = 2𝑓𝑚 each spectral replicate is separated from 

each of its neighbors by a frequency band exactly equal to 𝑓𝑠 hertz, and the analog 

waveform ca theoretically be completely recovered from the samples, by the use of 

filtering. It should be clear that if  𝑓𝑠 > 2𝑓𝑚, the replications will be move farther apart 

in frequency making it easier to perform the filtering operation.  

When the sampling rate is reduced, such that 𝑓𝑠 < 2𝑓𝑚, the replications will overlap, as 

shown in figure below, and some information will be lost. This phenomenon is called 

aliasing. 
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Sampled spectrum 𝑓𝑠 > 2𝑓𝑚 

 

Sampled spectrum 𝑓𝑠 < 2𝑓𝑚 

 

A bandlimited signal having no spectral components above 𝑓𝑚 hertz can be 

determined uniquely by values sampled at uniform intervals of     𝑇𝑠 ≤
1

2𝑓𝑚
𝑠𝑒𝑐. 

The sampling rate is 𝑓𝑠 =
1

𝑇𝑠
 

So that 𝑓𝑠 ≥ 2𝑓𝑚. The sampling rate 𝑓𝑠 = 2𝑓𝑚 is called Nyquist rate. 

 

Example: Find the Nyquist rate and Nyquist interval for the following signals. 

i- 𝑚(𝑡) =
sin(500𝜋𝑡)

𝜋𝑡
 

ii- 𝑚(𝑡) =
1

2𝜋
cos(4000𝜋𝑡) cos(1000𝜋𝑡) 

Solution:  

i- 𝑤𝑡 = 500𝜋𝑡 ∴ 2𝜋𝑓 = 500𝜋 → 𝑓 = 250𝐻𝑧 

Nyquist interval =
1

2𝑓𝑚𝑎𝑥
=

1

2×250
= 2𝑚𝑠𝑒𝑐. 
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Nyquist rate =2𝑓𝑚𝑎𝑥 = 2 × 250 = 500𝐻𝑧 

 

ii- 𝑚(𝑡) =
1

2𝜋
[
1

2
{cos(4000𝜋𝑡 − 1000𝜋𝑡) + cos(4000𝜋𝑡 + 1000𝜋𝑡)}] 

=
1

4𝜋
{cos(3000𝜋𝑡) + cos(5000𝜋𝑡)} 

Then the highest frequency is 2500Hz 

Nyquist interval =
1

2𝑓𝑚𝑎𝑥
=

1

2×2500
= 0.2𝑚𝑠𝑒𝑐. 

Nyquist rate =2𝑓𝑚𝑎𝑥 = 2 × 2500 = 5000𝐻𝑧 

 

H. W: 

Find the Nyquist interval and Nyquist rate for the following: 

i- 
1

2𝜋
cos(400𝜋𝑡) . cos(200𝜋𝑡) 

ii- 
1

𝜋
𝑠𝑖𝑛𝜋𝑡 

Example: 

A waveform [20+20sin(500t+30o] is to be sampled periodically and reproduced 

from these sample values. Find maximum allowable time interval between 

sample values, how many sample values are needed to be stored in order to 

reproduce 1 sec of this waveform?. 

Solution: 

𝑥(𝑡) = 20 + 20 sin(500𝑡 + 300) 

𝑤 = 500 → 2𝜋𝑓 = 500 → 𝑓 = 79.58𝐻𝑧 

Minimum sampling rate will be twice of the signal frequency: 

𝑓𝑠(min) = 2 × 79.58 = 159.15𝐻𝑧 

𝑇𝑠(𝑚𝑎𝑥) =
1

𝑓𝑠(min)
=

1

159.15
= 6.283𝑚𝑠𝑒𝑐. 
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Number of sample in 1𝑠𝑒𝑐 =
1

6.283𝑚𝑠𝑒𝑐
= 159.16 ≈ 160𝑠𝑎𝑚𝑝𝑙𝑒 

 

2- Source coding:  

 An important problem in communications is the efficient representation of data 

generated by a discrete source. The process by which this representation is 

accomplished is called source encoding. An efficient source encoder must satisfies two 

functional requirements: 

i- The code words produced by the encoder are in binary form. 

ii-  The source code is uniquely decodable, so that the original source sequence can 

be reconstructed perfectly from the encoded binary sequence. 

 

The entropy for a source with statistically independent symbols: 

𝐻(𝑌) = −∑𝑃(𝑦𝑗)

𝑚

𝑗=1

log2𝑃(𝑦𝑗) 

We have: 

max[𝐻(𝑌)] = 𝑙𝑜𝑔2𝑚 

A code efficiency can therefore be defined as: 

𝜂 =
𝐻(𝑌)

max[𝐻(𝑌)]
× 100 

The overall code length, L, can be defined as the average code word length: 

𝐿 =∑𝑃(𝑥𝑗)𝑙𝑗

𝑚

𝑗=1

𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 
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The code efficiency can be found by: 

𝜂 =
𝐻(𝑌)

L
× 100 

Not that                   max[𝐻(𝑌)] 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 = 𝐿𝑏𝑖𝑡𝑠/𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 

 

i- Fixed- Length Code Words: 

If the alphabet X consists of the 7 symbols {a, b, c, d, e, f, g}, then the following 

fixed-length code of block length L = 3 could be used.  

C(a) = 000 

C(b) = 001 

C(c) = 010 

C(d) = 011 

C(e) = 100 

C(f) = 101 

C(g) = 110. 

The encoded output contains L bits per source symbol. For the above example 

the source sequence bad... would be encoded into 001000011... . Note that the 

output bits are simply run together (or, more technically, concatenated). This 

method is nonprobabilistic; it takes no account of whether some symbols occur 

more frequently than others, and it works robustly regardless of the symbol 

frequencies. 

This is used when the source produces almost equiprobable messages 

)(...)()()( 321 nxpxpxpxp  , then 
Cn Lllll  ...321
 and for binary coding 

then: 

1- nLC 2log           bit/message             if 
rn 2       ( ,....16,8,4,2n and r is an 

integer) which gives %100  

2-  1][log2  nIntLC
    bits/message                if 

rn 2  which gives less efficiency 

Example 

For ten equiprobable messages coded in a fixed length code then  
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10

1
)( ixp  and 41]10[log2  IntLC

 bits 

and %048.83%100
4

10log
%100

)( 2 
CL

XH
  

Example: For eight equiprobable messages coded in a fixed length code then  

8

1
)( ixp  and 38log2 CL  bits and %100%100

3

3
  

Example: Find the efficiency of a fixed length code used to encode messages obtained 

from throwing a fair die (a) once, (b) twice, (c) 3 times. 

Solution   

a- For a fair die, the messages obtained from it are equiprobable with a probability 

of 
6

1
)( ixp  with 6n . 

     31]6[log2  IntLC
 bits/message 

     %165.86%100
3

6log
%100

)( 2 
CL

XH
  

b-  For two throws then the possible messages are 3666 n  messages with 

equal probabilities  

61]36[log2  IntLC
 bits/message 6  bits/2-symbols 

while 6log)( 2XH  bits/symbol    %165.86%100
)(2





CL

XH
  

c-  For three throws then the possible messages are 216666 n  with equal 

probabilities 

    81]216[log2  IntLC
 bits/message 8  bits/3-symbols 

     while 6log)( 2XH  bits/symbol     %936.96%100
)(3





CL

XH
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ii- Variable-Length Code Words 

When the source symbols are not equally probable, a more efficient encoding method 

is to use variable-length code words. For example, a variable-length code for the 

alphabet X = {a, b, c} and its lengths might be given by  

C(a)= 0         l(a)=1 

C(b)= 10       l(b)=2 

C(c)= 11        l(c)=2 

The major property that is usually required from any variable-length code is that of 

unique decodability. For example, the above code C for the alphabet X = {a, b, c} is 

soon shown to be uniquely decodable. However such code is not uniquely decodable, 

even though the codewords are all different. If the source decoder observes 01, it 

cannot determine whether the source emitted (a b) or (c). 

 Prefix-free codes: A prefix code is a type of code system (typically a variable-

length code) distinguished by its possession of the "prefix property", which requires 

that there is no code word in the system that is a prefix (initial segment) of any other 

code word in the system. For example: 

{𝑎 = 0, 𝑏 = 110, 𝑐 = 10, 𝑑 = 111}𝑖𝑠𝑎𝑝𝑟𝑒𝑓𝑖𝑥𝑐𝑜𝑑𝑒. 

When message probabilities are not equal, then we use variable length codes. The 

following properties need to be considered when attempting to use variable length 

codes: 

1) Unique decoding: 

Example  

Consider a 4 alphabet symbols with symbols represented by binary digits as 

follows: 

0A  

01B  

11C  
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00D  

If we receive the code word 0011  it is not known whether the transmission was DC  

or AAC . This example is not, therefore, uniquely decodable. 

2) Instantaneous decoding:  

Example  

Consider a 4 alphabet symbols with symbols represented by binary digits as 

follows: 

0A  

10B  

110C  

111D  

This code can be instantaneously decoded since no complete codeword is a prefix of a 

larger codeword. This is in contrast to the previous example where A  is a prefix of both 

B  and D . This example is also a ‘comma code’ as the symbol zero indicates the end 

of a codeword except for the all ones word whose length is known. 

Example  

Consider a 4 alphabet symbols with symbols represented by binary digits as follows: 

0A  

01B  

011C  

111D  

The code is identical to the previous example but the bits are time reversed. It is still 

uniquely decodable but no longer instantaneous, since early codewords are now prefixes 

of later ones.  

Shannon Code  

For messages 1x , 2x , 
3x ,…

nx  with probabilities )( 1xp , )( 2xp , )( 3xp ,… )( nxp  then: 
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1) )(log2 ii xpl                         if 
r

ixp 









2

1
)(                  ,...}

8

1
,

4

1
,

2

1
{  

2) 1)](log[ 2  ii xpIntl             if 
r

ixp 









2

1
)(  

Also define                                





1

1

)(
i

k
ki xpF                   01  i  

then the codeword of 
ix  is the binary equivalent of 

iF  consisting of 
il  bits.  

  il

ii FC
2

  

where 
iC  is the binary equivalent of 

iF  up to 
il  bits. In encoding, messages must be 

arranged in a decreasing order of probabilities. 

 

Example  

Develop the Shannon code for the following set of messages,  

]05.008.01.012.015.02.03.0[)( xp  

then find: 

(a) Code efficiency, 

(b)  )0(p  at the encoder output. 

Solution 

ix  )( ixp  
il  

iF  
iC  

i0  

1x  0.3 2 0 00 2 

2x  0.2 3 0.3 010 2 

3x  0.15 3 0.5 100 2 

4x  0.12 4 0.65 1010 2 

5x  0.10 4 0.77 1100 2 

6x  0.08 4 0.87 1101 1 

7x  0.05 5 0.95 11110 1 
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(a) To find the code efficiency, we have 

1.3)(
7

1


i

iiC xplL  bits/message. 

6029.2)(log)()(
7

1
2  


i

i
i xpxpXH  bits/message. 

%965.83%100
)(


CL

XH
  

(b) )0(p  at the encoder output is 

1.3

05.008.02.024.03.04.06.0
)(0

)0(

7

1 





C

i
ii

L

xp

p  

603.0)0( p  

Example  

Repeat the previous example using ternary coding. 

Solution 

1) )(log3 ii xpl                       if 
r

ixp 









3

1
)(                  ,...}

27

1
,

9

1
,

3

1
{  

To find  

    1 

    0 

    1 

    0 

To find  

    1 

     1 

    0 

    0 

To find  

        0 

        0 

To find  

    0 

     1 

To find  

     1 

    0 
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2) 1)](log[ 3  ii xpIntl        if r

ixp 









3

1
)(

         and           il

ii FC
3

                           

ix  )( ixp  
il  

iF  
iC  

i0  

1x  0.3 2 0 00 2 

2x  0.2 2 0.3 02 1 

3x  0.15 2 0.5 11 0 

4x  0.12 2 0.65 12 0 

5x  0.10 3 0.77 202 1 

6x  0.08 3 0.87 212 0 

7x  0.05 3 0.95 221 0 

 

 

 

 

 

 

 

 (a) To find the code efficiency, we have 

23.2)(
7

1


i

iiC xplL  ternary unit/message. 

642.1)(log)()(
7

1
3  


i

i
i xpxpXH  ternary unit/message. 

%632.73%100
)(


CL

XH
  

(b) )0(p  at the encoder output is 

To find  

        0 

To find  

     0 

To find  

     1 

     1 

To find  

     1 

    2 

To find  

     2 

     0 
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23.2

1.02.06.0
)(0

)0(

7

1 





C

i
ii

L

xp

p  

404.0)0( p  

Shannon- Fano Code: 

In Shannon–Fano coding, the symbols are arranged in order from most probable to 

least probable, and then divided into two sets whose total probabilities are as close 

as possible to being equal. All symbols then have the first digits of their codes 

assigned; symbols in the first set receive "0" and symbols in the second set receive 

"1". As long as any sets with more than one member remain, the same process is 

repeated on those sets, to determine successive digits of their codes. 

Example: 

The five symbols which have the following frequency and probabilities, design 

suitable Shannon-Fano binary code. Calculate average code length, source entropy 

and efficiency.   

Symbol count Probabilities Binary 

codes 

Length 

A 15 0.385 00 2 

B 7 0.1795 01 2 

C 6 0.154 10 2 

D 6 0.154 110 3 

E 5 0.128 111 3 

 

The average code word length: 

𝐿 =∑𝑃(𝑥𝑗)𝑙𝑗

𝑚

𝑗=1
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𝐿 = 2 × 0.385 + 2 × 0.1793 + 2 × 0.154 + 3 × 0.154 + 3 × 0.128

= 2.28𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

The source entropy is: 

𝐻(𝑌) = −∑𝑃(𝑦𝑗)

𝑚

𝑗=1

log2𝑃(𝑦𝑗) 

𝐻(𝑌) = −[0.385𝑙𝑛0.385 + 0.1793𝑙𝑛0.1793 + 2 × 0.154𝑙𝑛0.154

+ 0.128𝑙0.128]/𝑙𝑛2 

𝐻(𝑌) = 2.18567𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

The code efficiency: 

𝜂 =
𝐻(𝑌)

L
× 100 =

2.18567

2.28
× 100 = 95.86% 

Example  

Develop the Shannon - Fano code for the following set of messages, 

]08.01.012.015.02.035.0[)( xp  then find the code efficiency. 

Solution 

ix  )( ixp  Code il  

1x  0.35 0 0  2 

2x  0.2 0 1  2 

3x  0.15 1 0 0 3 

4x  0.12 1 0 1 3 

5x  0.10 1 1 0 3 

6x  0.08 1 1 1 3 
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45.2)(
6

1


i

iiC xplL  bits/symbol 

396.2)(log)()(
6

1
2




i

ii xpxpXH
 bits/symbol 

%796.97%100
)(


CL

XH
  

Example  

Repeat the previous example using with 3r  

Solution 

ix  )( ixp  Code il  

1x  0.35 0  1 

2x  0.2 1 0 2 

3x  0.15 1 1 2 

4x  0.12 2 0 2 

5x  0.10 2 1 2 

6x  0.08 2 2 2 

 

65.1)(
6

1


i

iiC xplL     ternary unit/symbol 

512.1)(log)()(
6

1
3




i

ii xpxpXH  ternary unit/symbol 

%636.91%100
)(


CL

XH
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Huffman Code 

The Huffman coding algorithm comprises two steps, reduction and splitting. These 

steps can be summarized as follows: 

1) Reduction 

a) List the symbols in descending order of probability. 

b) Reduce the r  least probable symbols to one symbol with a probability 

equal to their combined probability. 

c) Reorder in descending order of probability at each stage. 

d) Repeat the reduction step until only two symbols remain. 

2) Splitting 

a) Assign r,...1,0  to the r final symbols and work backwards. 

b) Expand or lengthen the code to cope with each successive split. 

 

Example: Design Huffman codes for 𝐴 = {𝑎1, 𝑎2, …… . 𝑎5},having the probabilities 

{0.2, 0.4, 0.2, 0.1, 0.1}.  
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The average code word length: 

𝐿 = 0.4 × 1 + 0.2 × 2 + 0.2 × 3 + 0.1 × 4 + 0.1 × 4 = 2.2𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

The source entropy: 

𝐻(𝑌) = −[0.4𝑙𝑛0.4 + 2 × 0.2𝑙𝑛0.2 + 2 × 0.1𝑙𝑛0.1]/𝑙𝑛2 = 2.12193  bits/symbol 

The code efficiency: 

𝜂 =
2.12193

2.2
× 100 = 96.45% 

It can be design Huffman codes with minimum variance: 

 

The average code word length is still 2.2 bits/symbol. But variances are different! 

Example  

Develop the Huffman code for the following set of symbols 

Symbol A B C D E F G H 

Probability 0.1 0.18 0.4 0.05 0.06 0.1 0.07 0.04 
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Solution 

C 0.40 0.40 0.40 0.40 0.40 0.40 0.60 1.0 

         

B 0.18 0.18 0.18 0.19 0.23 0.37 0.40  

         

A 0.10 0.10 0.13 0.18 0.19 0.23   

         

F 0.10 0.10 0.10 0.13 0.18    

         

G 0.07 0.09 0.10 0.10     

         

E 0.06 0.07 0.09      

         

D 0.05 0.06       

         

H 0.04        

 

So we obtain the following codes 

Symbol A B C D E F G H 

Probability 0.1 0.18 0.4 0.05 0.06 0.1 0.07 0.04 

Codeword 011 001 1 00010 0101 0000 0100 00011 

il  3 3 1 5 4 4 4 5 

552.2)(log)()(
8

1
2  

i
ii xpxpXH  bits/symbol 

61.2)(
8

1


i

iiC xplL  bits/symbol 

0 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 
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%778.97%100
)(


CL

XH
  

Data Compression: 

In computer science and information theory, data compression, source coding, or bit-

rate reduction involves encoding information using fewer bits than the original 

representation. Compression can be either lossy or lossless. 

Lossless data compression algorithms usually exploit statistical redundancy to 

represent data more concisely without losing information, so that the process is 

reversible. Lossless compression is possible because most real-world data has statistical 

redundancy. For example, an image may have areas of color that do not change over 

several pixels. 

Lossy data compression is the converse of lossless data compression. In these 

schemes, some loss of information is acceptable. Dropping nonessential detail from the 

data source can save storage space. There is a corresponding trade-off between 

preserving information and reducing size. 

Run-Length Encoding (RLE): 

Run-Length Encoding is a very simple lossless data compression technique that 

replaces runs of two or more of the same character with a number which represents the 

length of the run, followed by the original character; single characters are coded as 

runs of 1. RLE is useful for highly-redundant data, indexed images with many pixels 

of the same color in a row. 

Example:  

Input: AAABBCCCCDEEEEEEAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAA 

Output: 3A2B4C1D6E38A 

The input message to RLE encoder is a variable while the output code word is fixed, 

unlike Huffman code where the input is fixed while the output is varied. 

http://en.wikipedia.org/wiki/Lossy_compression
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Example : Consider these repeated pixels values in an image … 0 0 0 0 0 0 0 0 0 0 0 0 

5 5 5 5 0 0 0 0 0 0 0 0 We could represent them more efficiently as (12, 0)(4, 5)(8, 0)  

24 bytes reduced to 6 which gives a compression ratio of 24/6 = 4:1. 

Example :Original Sequence (1 Row): 111122233333311112222 can be encoded as: 

(4,1),(3,2),(6,3),(4,1),(4,2). 21 bytes reduced to 10 gives a compression ratio of 21/10 = 

21:10. 

Example : Original Sequence (1 Row): – HHHHHHHUFFFFFFFFFFFFFF  can be 

encoded as: (7,H),(1,U),(14,F) . 22 bytes reduced to 6 gives a compression ratio of 22/6 

= 11:3 . 

Savings Ratio : the savings ratio is related to the compression ratio and is a measure of 

the amount of redundancy between two representations (compressed and 

uncompressed). Let: 

N1 = the total number of bytes required to store an uncompressed (raw) source image. 

N2 = the total number of bytes required to store the compressed data.  

The compression ratio Cr is then defined as:  

𝐶𝑟 =
𝑁1
𝑁2

 

 Larger compression ratios indicate more effective compression  

 Smaller compression ratios indicate less effective compression 

 Compression ratios less than one indicate that the uncompressed representation 

has high degree of irregularity.  

The saving ratio Sr is then defined as : 

𝑆𝑟 =
(𝑁1 −𝑁2)

𝑁1
 

 Higher saving ratio indicate more effective compression while negative ratios are 

possible and indicate that the compressed image has larger memory size than the 

original.  

Example: a 5 Megabyte image is compressed into a 1 Megabyte image, the savings 

ratio is defined as (5-1)/5 or 4/5 or 80%.  

This ratio indicates that 80% of the uncompressed data has been eliminated in the 

compressed encoding. 


