

DR. MAHMOOD 30 2017-12-08

Chapter Three

Source Coding

1- Sampling theorem:

Sampling of the signals is the fundamental operation in digital communication. A

continuous time signal is first converted to discrete time signal by sampling process.

Also it should be possible to recover or reconstruct the signal completely from its

samples.

The sampling theorem state that:

i- A band limited signal of finite energy, which has no frequency components higher

than W Hz, is completely described by specifying the values of the signal at instant

of time separated by 1/2W second and

ii- A band limited signal of finite energy, which has no frequency components higher

than W Hz, may be completely recovered from the knowledge of its samples taken

at the rate of 2W samples per second.

When the sampling rate is chosen 𝑓𝑠 = 2𝑓𝑚 each spectral replicate is separated from

each of its neighbors by a frequency band exactly equal to 𝑓𝑠 hertz, and the analog

waveform ca theoretically be completely recovered from the samples, by the use of

filtering. It should be clear that if 𝑓𝑠 > 2𝑓𝑚, the replications will be move farther apart

in frequency making it easier to perform the filtering operation.

When the sampling rate is reduced, such that 𝑓𝑠 < 2𝑓𝑚, the replications will overlap, as

shown in figure below, and some information will be lost. This phenomenon is called

aliasing.

DR. MAHMOOD 31 2017-12-08

Sampled spectrum 𝑓𝑠 > 2𝑓𝑚

Sampled spectrum 𝑓𝑠 < 2𝑓𝑚

A bandlimited signal having no spectral components above 𝑓𝑚 hertz can be

determined uniquely by values sampled at uniform intervals of 𝑇𝑠 ≤
1

2𝑓𝑚
𝑠𝑒𝑐.

The sampling rate is 𝑓𝑠 =
1

𝑇𝑠

So that 𝑓𝑠 ≥ 2𝑓𝑚. The sampling rate 𝑓𝑠 = 2𝑓𝑚 is called Nyquist rate.

Example: Find the Nyquist rate and Nyquist interval for the following signals.

i- 𝑚(𝑡) =
sin(500𝜋𝑡)

𝜋𝑡

ii- 𝑚(𝑡) =
1

2𝜋
cos(4000𝜋𝑡) cos(1000𝜋𝑡)

Solution:

i- 𝑤𝑡 = 500𝜋𝑡 ∴ 2𝜋𝑓 = 500𝜋 → 𝑓 = 250𝐻𝑧

Nyquist interval =
1

2𝑓𝑚𝑎𝑥
=

1

2×250
= 2𝑚𝑠𝑒𝑐.

DR. MAHMOOD 32 2017-12-08

Nyquist rate =2𝑓𝑚𝑎𝑥 = 2 × 250 = 500𝐻𝑧

ii- 𝑚(𝑡) =
1

2𝜋
[
1

2
{cos(4000𝜋𝑡 − 1000𝜋𝑡) + cos(4000𝜋𝑡 + 1000𝜋𝑡)}]

=
1

4𝜋
{cos(3000𝜋𝑡) + cos(5000𝜋𝑡)}

Then the highest frequency is 2500Hz

Nyquist interval =
1

2𝑓𝑚𝑎𝑥
=

1

2×2500
= 0.2𝑚𝑠𝑒𝑐.

Nyquist rate =2𝑓𝑚𝑎𝑥 = 2 × 2500 = 5000𝐻𝑧

H. W:

Find the Nyquist interval and Nyquist rate for the following:

i-
1

2𝜋
cos(400𝜋𝑡) . cos(200𝜋𝑡)

ii-
1

𝜋
𝑠𝑖𝑛𝜋𝑡

Example:

A waveform [20+20sin(500t+30o] is to be sampled periodically and reproduced

from these sample values. Find maximum allowable time interval between

sample values, how many sample values are needed to be stored in order to

reproduce 1 sec of this waveform?.

Solution:

𝑥(𝑡) = 20 + 20 sin(500𝑡 + 300)

𝑤 = 500 → 2𝜋𝑓 = 500 → 𝑓 = 79.58𝐻𝑧

Minimum sampling rate will be twice of the signal frequency:

𝑓𝑠(min) = 2 × 79.58 = 159.15𝐻𝑧

𝑇𝑠(𝑚𝑎𝑥) =
1

𝑓𝑠(min)
=

1

159.15
= 6.283𝑚𝑠𝑒𝑐.

DR. MAHMOOD 33 2017-12-08

Number of sample in 1𝑠𝑒𝑐 =
1

6.283𝑚𝑠𝑒𝑐
= 159.16 ≈ 160𝑠𝑎𝑚𝑝𝑙𝑒

2- Source coding:

 An important problem in communications is the efficient representation of data

generated by a discrete source. The process by which this representation is

accomplished is called source encoding. An efficient source encoder must satisfies two

functional requirements:

i- The code words produced by the encoder are in binary form.

ii- The source code is uniquely decodable, so that the original source sequence can

be reconstructed perfectly from the encoded binary sequence.

The entropy for a source with statistically independent symbols:

𝐻(𝑌) = −∑𝑃(𝑦𝑗)

𝑚

𝑗=1

log2𝑃(𝑦𝑗)

We have:

max[𝐻(𝑌)] = 𝑙𝑜𝑔2𝑚

A code efficiency can therefore be defined as:

𝜂 =
𝐻(𝑌)

max[𝐻(𝑌)]
× 100

The overall code length, L, can be defined as the average code word length:

𝐿 =∑𝑃(𝑥𝑗)𝑙𝑗

𝑚

𝑗=1

𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙

DR. MAHMOOD 34 2017-12-08

The code efficiency can be found by:

𝜂 =
𝐻(𝑌)

L
× 100

Not that max[𝐻(𝑌)] 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 = 𝐿𝑏𝑖𝑡𝑠/𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑

i- Fixed- Length Code Words:

If the alphabet X consists of the 7 symbols {a, b, c, d, e, f, g}, then the following

fixed-length code of block length L = 3 could be used.

C(a) = 000

C(b) = 001

C(c) = 010

C(d) = 011

C(e) = 100

C(f) = 101

C(g) = 110.

The encoded output contains L bits per source symbol. For the above example

the source sequence bad... would be encoded into 001000011... . Note that the

output bits are simply run together (or, more technically, concatenated). This

method is nonprobabilistic; it takes no account of whether some symbols occur

more frequently than others, and it works robustly regardless of the symbol

frequencies.

This is used when the source produces almost equiprobable messages

)(...)()()(321 nxpxpxpxp , then
Cn Lllll ...321
 and for binary coding

then:

1- nLC 2log bit/message if
rn 2 (,....16,8,4,2n and r is an

integer) which gives %100

2- 1][log2 nIntLC
 bits/message if

rn 2 which gives less efficiency

Example

For ten equiprobable messages coded in a fixed length code then

DR. MAHMOOD 35 2017-12-08

10

1
)(ixp and 41]10[log2 IntLC

 bits

and %048.83%100
4

10log
%100

)(2
CL

XH

Example: For eight equiprobable messages coded in a fixed length code then

8

1
)(ixp and 38log2 CL bits and %100%100

3

3

Example: Find the efficiency of a fixed length code used to encode messages obtained

from throwing a fair die (a) once, (b) twice, (c) 3 times.

Solution

a- For a fair die, the messages obtained from it are equiprobable with a probability

of
6

1
)(ixp with 6n .

 31]6[log2 IntLC
 bits/message

 %165.86%100
3

6log
%100

)(2
CL

XH

b- For two throws then the possible messages are 3666 n messages with

equal probabilities

61]36[log2 IntLC
 bits/message 6 bits/2-symbols

while 6log)(2XH bits/symbol %165.86%100
)(2

CL

XH

c- For three throws then the possible messages are 216666 n with equal

probabilities

 81]216[log2 IntLC
 bits/message 8 bits/3-symbols

 while 6log)(2XH bits/symbol %936.96%100
)(3

CL

XH

DR. MAHMOOD 36 2017-12-08

ii- Variable-Length Code Words

When the source symbols are not equally probable, a more efficient encoding method

is to use variable-length code words. For example, a variable-length code for the

alphabet X = {a, b, c} and its lengths might be given by

C(a)= 0 l(a)=1

C(b)= 10 l(b)=2

C(c)= 11 l(c)=2

The major property that is usually required from any variable-length code is that of

unique decodability. For example, the above code C for the alphabet X = {a, b, c} is

soon shown to be uniquely decodable. However such code is not uniquely decodable,

even though the codewords are all different. If the source decoder observes 01, it

cannot determine whether the source emitted (a b) or (c).

 Prefix-free codes: A prefix code is a type of code system (typically a variable-

length code) distinguished by its possession of the "prefix property", which requires

that there is no code word in the system that is a prefix (initial segment) of any other

code word in the system. For example:

{𝑎 = 0, 𝑏 = 110, 𝑐 = 10, 𝑑 = 111}𝑖𝑠𝑎𝑝𝑟𝑒𝑓𝑖𝑥𝑐𝑜𝑑𝑒.

When message probabilities are not equal, then we use variable length codes. The

following properties need to be considered when attempting to use variable length

codes:

1) Unique decoding:

Example

Consider a 4 alphabet symbols with symbols represented by binary digits as

follows:

0A

01B

11C

DR. MAHMOOD 37 2017-12-08

00D

If we receive the code word 0011 it is not known whether the transmission was DC

or AAC . This example is not, therefore, uniquely decodable.

2) Instantaneous decoding:

Example

Consider a 4 alphabet symbols with symbols represented by binary digits as

follows:

0A

10B

110C

111D

This code can be instantaneously decoded since no complete codeword is a prefix of a

larger codeword. This is in contrast to the previous example where A is a prefix of both

B and D . This example is also a ‘comma code’ as the symbol zero indicates the end

of a codeword except for the all ones word whose length is known.

Example

Consider a 4 alphabet symbols with symbols represented by binary digits as follows:

0A

01B

011C

111D

The code is identical to the previous example but the bits are time reversed. It is still

uniquely decodable but no longer instantaneous, since early codewords are now prefixes

of later ones.

Shannon Code

For messages 1x , 2x ,
3x ,…

nx with probabilities)(1xp ,)(2xp ,)(3xp ,…)(nxp then:

DR. MAHMOOD 38 2017-12-08

1))(log2 ii xpl if
r

ixp

2

1
)(,...}

8

1
,

4

1
,

2

1
{

2) 1)](log[2 ii xpIntl if
r

ixp

2

1
)(

Also define

1

1

)(
i

k
ki xpF 01 i

then the codeword of
ix is the binary equivalent of

iF consisting of
il bits.

 il

ii FC
2

where
iC is the binary equivalent of

iF up to
il bits. In encoding, messages must be

arranged in a decreasing order of probabilities.

Example

Develop the Shannon code for the following set of messages,

]05.008.01.012.015.02.03.0[)(xp

then find:

(a) Code efficiency,

(b))0(p at the encoder output.

Solution

ix)(ixp
il

iF
iC

i0

1x 0.3 2 0 00 2

2x 0.2 3 0.3 010 2

3x 0.15 3 0.5 100 2

4x 0.12 4 0.65 1010 2

5x 0.10 4 0.77 1100 2

6x 0.08 4 0.87 1101 1

7x 0.05 5 0.95 11110 1

DR. MAHMOOD 39 2017-12-08

(a) To find the code efficiency, we have

1.3)(
7

1

i

iiC xplL bits/message.

6029.2)(log)()(
7

1
2

i

i
i xpxpXH bits/message.

%965.83%100
)(

CL

XH

(b))0(p at the encoder output is

1.3

05.008.02.024.03.04.06.0
)(0

)0(

7

1

C

i
ii

L

xp

p

603.0)0(p

Example

Repeat the previous example using ternary coding.

Solution

1))(log3 ii xpl if
r

ixp

3

1
)(,...}

27

1
,

9

1
,

3

1
{

To find

 1

 0

 1

 0

To find

 1

 1

 0

 0

To find

 0

 0

To find

 0

 1

To find

 1

 0

DR. MAHMOOD 40 2017-12-08

2) 1)](log[3 ii xpIntl if r

ixp

3

1
)(

 and il

ii FC
3

ix)(ixp
il

iF
iC

i0

1x 0.3 2 0 00 2

2x 0.2 2 0.3 02 1

3x 0.15 2 0.5 11 0

4x 0.12 2 0.65 12 0

5x 0.10 3 0.77 202 1

6x 0.08 3 0.87 212 0

7x 0.05 3 0.95 221 0

 (a) To find the code efficiency, we have

23.2)(
7

1

i

iiC xplL ternary unit/message.

642.1)(log)()(
7

1
3

i

i
i xpxpXH ternary unit/message.

%632.73%100
)(

CL

XH

(b))0(p at the encoder output is

To find

 0

To find

 0

To find

 1

 1

To find

 1

 2

To find

 2

 0

DR. MAHMOOD 41 2017-12-08

23.2

1.02.06.0
)(0

)0(

7

1

C

i
ii

L

xp

p

404.0)0(p

Shannon- Fano Code:

In Shannon–Fano coding, the symbols are arranged in order from most probable to

least probable, and then divided into two sets whose total probabilities are as close

as possible to being equal. All symbols then have the first digits of their codes

assigned; symbols in the first set receive "0" and symbols in the second set receive

"1". As long as any sets with more than one member remain, the same process is

repeated on those sets, to determine successive digits of their codes.

Example:

The five symbols which have the following frequency and probabilities, design

suitable Shannon-Fano binary code. Calculate average code length, source entropy

and efficiency.

Symbol count Probabilities Binary

codes

Length

A 15 0.385 00 2

B 7 0.1795 01 2

C 6 0.154 10 2

D 6 0.154 110 3

E 5 0.128 111 3

The average code word length:

𝐿 =∑𝑃(𝑥𝑗)𝑙𝑗

𝑚

𝑗=1

DR. MAHMOOD 42 2017-12-08

𝐿 = 2 × 0.385 + 2 × 0.1793 + 2 × 0.154 + 3 × 0.154 + 3 × 0.128

= 2.28𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙

The source entropy is:

𝐻(𝑌) = −∑𝑃(𝑦𝑗)

𝑚

𝑗=1

log2𝑃(𝑦𝑗)

𝐻(𝑌) = −[0.385𝑙𝑛0.385 + 0.1793𝑙𝑛0.1793 + 2 × 0.154𝑙𝑛0.154

+ 0.128𝑙0.128]/𝑙𝑛2

𝐻(𝑌) = 2.18567𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙

The code efficiency:

𝜂 =
𝐻(𝑌)

L
× 100 =

2.18567

2.28
× 100 = 95.86%

Example

Develop the Shannon - Fano code for the following set of messages,

]08.01.012.015.02.035.0[)(xp then find the code efficiency.

Solution

ix)(ixp Code il

1x 0.35 0 0 2

2x 0.2 0 1 2

3x 0.15 1 0 0 3

4x 0.12 1 0 1 3

5x 0.10 1 1 0 3

6x 0.08 1 1 1 3

DR. MAHMOOD 43 2017-12-08

45.2)(
6

1

i

iiC xplL bits/symbol

396.2)(log)()(
6

1
2

i

ii xpxpXH
 bits/symbol

%796.97%100
)(

CL

XH

Example

Repeat the previous example using with 3r

Solution

ix)(ixp Code il

1x 0.35 0 1

2x 0.2 1 0 2

3x 0.15 1 1 2

4x 0.12 2 0 2

5x 0.10 2 1 2

6x 0.08 2 2 2

65.1)(
6

1

i

iiC xplL ternary unit/symbol

512.1)(log)()(
6

1
3

i

ii xpxpXH ternary unit/symbol

%636.91%100
)(

CL

XH

DR. MAHMOOD 44 2017-12-08

Huffman Code

The Huffman coding algorithm comprises two steps, reduction and splitting. These

steps can be summarized as follows:

1) Reduction

a) List the symbols in descending order of probability.

b) Reduce the r least probable symbols to one symbol with a probability

equal to their combined probability.

c) Reorder in descending order of probability at each stage.

d) Repeat the reduction step until only two symbols remain.

2) Splitting

a) Assign r,...1,0 to the r final symbols and work backwards.

b) Expand or lengthen the code to cope with each successive split.

Example: Design Huffman codes for 𝐴 = {𝑎1, 𝑎2, …… . 𝑎5},having the probabilities

{0.2, 0.4, 0.2, 0.1, 0.1}.

DR. MAHMOOD 45 2017-12-08

The average code word length:

𝐿 = 0.4 × 1 + 0.2 × 2 + 0.2 × 3 + 0.1 × 4 + 0.1 × 4 = 2.2𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙

The source entropy:

𝐻(𝑌) = −[0.4𝑙𝑛0.4 + 2 × 0.2𝑙𝑛0.2 + 2 × 0.1𝑙𝑛0.1]/𝑙𝑛2 = 2.12193 bits/symbol

The code efficiency:

𝜂 =
2.12193

2.2
× 100 = 96.45%

It can be design Huffman codes with minimum variance:

The average code word length is still 2.2 bits/symbol. But variances are different!

Example

Develop the Huffman code for the following set of symbols

Symbol A B C D E F G H

Probability 0.1 0.18 0.4 0.05 0.06 0.1 0.07 0.04

DR. MAHMOOD 46 2017-12-08

Solution

C 0.40 0.40 0.40 0.40 0.40 0.40 0.60 1.0

B 0.18 0.18 0.18 0.19 0.23 0.37 0.40

A 0.10 0.10 0.13 0.18 0.19 0.23

F 0.10 0.10 0.10 0.13 0.18

G 0.07 0.09 0.10 0.10

E 0.06 0.07 0.09

D 0.05 0.06

H 0.04

So we obtain the following codes

Symbol A B C D E F G H

Probability 0.1 0.18 0.4 0.05 0.06 0.1 0.07 0.04

Codeword 011 001 1 00010 0101 0000 0100 00011

il 3 3 1 5 4 4 4 5

552.2)(log)()(
8

1
2

i
ii xpxpXH bits/symbol

61.2)(
8

1

i

iiC xplL bits/symbol

0

1

0

0

0

0

0

0

1

1

1

1

1

1

DR. MAHMOOD 47 2017-12-08

%778.97%100
)(

CL

XH

Data Compression:

In computer science and information theory, data compression, source coding, or bit-

rate reduction involves encoding information using fewer bits than the original

representation. Compression can be either lossy or lossless.

Lossless data compression algorithms usually exploit statistical redundancy to

represent data more concisely without losing information, so that the process is

reversible. Lossless compression is possible because most real-world data has statistical

redundancy. For example, an image may have areas of color that do not change over

several pixels.

Lossy data compression is the converse of lossless data compression. In these

schemes, some loss of information is acceptable. Dropping nonessential detail from the

data source can save storage space. There is a corresponding trade-off between

preserving information and reducing size.

Run-Length Encoding (RLE):

Run-Length Encoding is a very simple lossless data compression technique that

replaces runs of two or more of the same character with a number which represents the

length of the run, followed by the original character; single characters are coded as

runs of 1. RLE is useful for highly-redundant data, indexed images with many pixels

of the same color in a row.

Example:

Input: AAABBCCCCDEEEEEEAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAA

Output: 3A2B4C1D6E38A

The input message to RLE encoder is a variable while the output code word is fixed,

unlike Huffman code where the input is fixed while the output is varied.

http://en.wikipedia.org/wiki/Lossy_compression

DR. MAHMOOD 48 2017-12-08

Example : Consider these repeated pixels values in an image … 0 0 0 0 0 0 0 0 0 0 0 0

5 5 5 5 0 0 0 0 0 0 0 0 We could represent them more efficiently as (12, 0)(4, 5)(8, 0)

24 bytes reduced to 6 which gives a compression ratio of 24/6 = 4:1.

Example :Original Sequence (1 Row): 111122233333311112222 can be encoded as:

(4,1),(3,2),(6,3),(4,1),(4,2). 21 bytes reduced to 10 gives a compression ratio of 21/10 =

21:10.

Example : Original Sequence (1 Row): – HHHHHHHUFFFFFFFFFFFFFF can be

encoded as: (7,H),(1,U),(14,F) . 22 bytes reduced to 6 gives a compression ratio of 22/6

= 11:3 .

Savings Ratio : the savings ratio is related to the compression ratio and is a measure of

the amount of redundancy between two representations (compressed and

uncompressed). Let:

N1 = the total number of bytes required to store an uncompressed (raw) source image.

N2 = the total number of bytes required to store the compressed data.

The compression ratio Cr is then defined as:

𝐶𝑟 =
𝑁1
𝑁2

 Larger compression ratios indicate more effective compression

 Smaller compression ratios indicate less effective compression

 Compression ratios less than one indicate that the uncompressed representation

has high degree of irregularity.

The saving ratio Sr is then defined as :

𝑆𝑟 =
(𝑁1 −𝑁2)

𝑁1

 Higher saving ratio indicate more effective compression while negative ratios are

possible and indicate that the compressed image has larger memory size than the

original.

Example: a 5 Megabyte image is compressed into a 1 Megabyte image, the savings

ratio is defined as (5-1)/5 or 4/5 or 80%.

This ratio indicates that 80% of the uncompressed data has been eliminated in the

compressed encoding.

