Tutorial (1) chapter three

Q1) A transmitter has the following symbols (S1, S2, S3, S4, S5, S6) with equiprobable probabilities. If the fixed length binary coding is used for the transmitter, calculate code efficiency.

Solution:

$$
\begin{aligned}
& L_{c}=\operatorname{int}\left[\log _{2} n\right]+1=\operatorname{int}\left[\log _{2} 6\right]+1=3 \text { bit } \\
& H(x)=\log _{2} n=\log _{2} 6=2.584 \text { bit } / \text { symbol } \\
& \eta=\frac{H(X)}{L_{C}} \times 100=\frac{2.584}{3} \times 100=86.133 \%
\end{aligned}
$$

Q2/ Find code efficiency for 14 equiprobable messages coded using fixed length code.

Solution:

$$
\begin{gathered}
L_{c}=\operatorname{int}\left[\log _{2} n\right]+1=\operatorname{int}\left[\log _{2} 14\right]+1=4 \text { bit } \\
H(x)=\log _{2} n=\log _{2} 14=3.807 \mathrm{bit} / \mathrm{symbol} \\
\eta=\frac{H(X)}{L_{C}} \times 100=\frac{3.807}{4} \times 100=95.175 \%
\end{gathered}
$$

Q3/ Find code efficiency for 32 equiprobable messages coded using fixed length code.

Solution:

$$
\begin{gathered}
L_{c}=\log _{2} n=\log _{2} 32=5 \text { bit } \\
H(x)=\log _{2} n=\log _{2} 32=5 \text { bit } / \text { symbol } \\
\eta=\frac{H(X)}{L_{C}} \times 100=100 \%
\end{gathered}
$$

Q4/ Explain if the following codes is instantaneous decoding and unique decoding or not and why?
$1-[A=00, B=01, C=10, D=110, E=1110]$
$2-[\mathrm{A}=1, \mathrm{~B}=01, \mathrm{C}=001, \mathrm{D}=111]$

Solution:

1- This code is instantaneous decoding and unique decoding, since no code word is prefix (initial segment) of other codes and for example ($\mathrm{S}=111001110$) uniquely decoded as code (EBD).

2- This code is not instantaneous decoding and not unique decoding, since code word A is prefix (initial segment) of code D , and for example ($\mathrm{S}=011111$) can be decoded as (BDA) or decoded as (BAAAA).

