

الـمـستقبـل الـجامعـة

قسم هندسة تقنيات الأجهـزة الطبيـــــــة

اسم التدريسي : م.م. ميس خالد محمد اسم المادة :الميكانيك
عنوان المحاضرة: Center of mass and centroid
رقم المحاضرة: 8
الايميل الجامعي للتدريسي: mays.khalid@mustaqbal-college.edu.iq

Center of mass and centroid

What is the center of mass?

- The center of mass is a position defined relative to an object or system of objects. It is the average position of all the parts of the system, weighted according to their masses.

What is centroid ?

- The centroid or geometric center of a plane figure is the arithmetic mean position of all the points in the figure. Informally, it is the point at which a cutout of the shape could be perfectly balanced on the tip of a pin.

- The center of mass equal to centroid if the body is homogeneous.
- A body is said to be homogeneous if all the material points are materially uniform with respect to a single placement. A body that is not homogeneous is said to be inhomogeneous

Examples

Center of mass (homogeneous)
centroid (homogeneous)

Composites

- Often ,many bodies with complex geometries can be broken into simple shapes, of which the centroid are easy to locate.
- Composites bodies can be divided into four types:

1- composite line

- Composite line contains group of lines connected together

2- composite area

- Contains group of different shapes with different areas

3- Composite volume

- Contains different shapes with different volumes

4- Composite mass

- Contains a mix of areas, lines, volumes

Shape	Drawing	\bar{x}	\bar{y}	Area
Rectangle		$b / 2$	$h / 2$	$b h$
Triangle		$b / 3$	$h / 3$	$b h / 2$
Semicircle		0	$4 r / 3 \pi$	$\pi r^{2} / 2$

Quarter Circle			$4 r / 3 \pi$	$4 r / 3 \pi$	$\pi r^{2} / 4$
Parabolic Segment		3			
Complement of a					
Parabolic Segment					

CENTROID LOCATIONS FOR A FEW COMMON VOLUMES

How to solve centroid questions ?

- First , we will create a table to fill it with the suitable information.
- for example, if we have a composite line system with four lines. Then, the table will be :

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{L}	$\mathbf{X} \mathbf{*}$	$\mathbf{Y} \mathbf{H}$	$\mathbf{Z} \mathbf{*}$
$\mathbf{1}$							
$\mathbf{2}$							
$\mathbf{3}$							
$\mathbf{4}$							

- if we have a composite area system with four shapes. Then, the table will be :

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	A	\mathbf{X} *	Y*A	Z*A
$\mathbf{1}$							
2							
3							
4							

if we have a composite volume system with four shapes. Then, the table will be :

if we have a composite mass system with four shapes. Then, the table will be :

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{m}	$\mathbf{X} \mathbf{*} \mathbf{m}$	$\mathbf{Y} \mathbf{m}$	$\mathbf{Z} \mathbf{*} \mathbf{m}$
$\mathbf{1}$							
$\mathbf{2}$							
$\mathbf{3}$							
$\mathbf{4}$							
				$\mathbf{E m}$	$\mathbf{\Sigma X m}$	$\mathbf{\Sigma Y m}$	

The final formula for the centroid

- $\mathrm{X}=\frac{\Sigma(X L, X A, X V, X M)}{\Sigma(L, A, V, M)}$
- $\mathrm{Y}=\frac{\Sigma(Y L, Y A, Y V, Y M)}{\Sigma(L, A, V, M)}$
- $\mathrm{Z}=\frac{\Sigma(Z L, Z A, Z V, Z M)}{\Sigma(L, A, V, M)}$

Question 1

Find the centroid $\overline{\mathbf{y}}$ of the unsymmetrical I-section with respect to its base.

SHAPE	$A^{\prime}\left(\mathrm{mm}^{2}\right)$	$\bar{y}^{\prime}(\mathrm{mm})$	$A^{\prime} \bar{y}^{\prime}\left(\mathrm{mm}^{3}\right)$
(1) \rightleftharpoons	$120 \times 30=3,600$	$130+\frac{30}{2}=145$	522,000
(2)	$20 \times 100=2,000$	$30+\frac{100}{2}=80$	160,000
(3) \rightleftharpoons	$80 \times 30=2,400$	$\frac{30}{2}=15$	36,000

$$
\bar{y}=\frac{\sum A^{\prime} \bar{y}^{\prime}}{\sum A^{\prime}}=\frac{718,000 \mathrm{~mm}^{3}}{8,000 \mathrm{~mm}^{2}}=89.75 \mathrm{~mm} / 1
$$

Question 2

Calculate the centroid $\overline{\mathbf{y}}$ of the geometry with respect to its base.

SHAPE	$A^{\prime}\left(\mathrm{ma}^{2}\right)$	$\bar{y}^{\prime}(\mathrm{mm})$	$A^{\prime} y^{\prime}\left(\mathrm{mm}^{3}\right)$
(1)	$\frac{\pi(100)^{2}}{2}=15,707.96$	$\frac{4 \pi}{3 \pi}=\frac{4(100)}{3 \pi}=42.44$	$666,666.67$
(2)	$-30 \times 20=-600$	$\frac{20}{2}=10$	$-6,000$
(3)	$-30 \times 20=-600$	$\frac{20}{2}=10$	$-6,000$

Question 3

Calculate the centroid $\overline{\mathbf{y}}$ of the geometry with respect to its base.

