AL- MUSTAQBAL UNIVERSITY COLLEGE DEPARTMIENT OF BIOMIDDICAL ENGINEERING

Signals and Systems for BME BME 322

Lecture 6

- Infinite Impulse Response (IIR) Filters -

Dr. Zaidoon AL-Shammari
Lecturer / Researcher
zaidoon.waleed@mustaqbal-college.edu.iq

Infinite Impulse Response (IIR) Filters

- IIR filters are recursive filters.
- Difference equation for IIR filters

$$
\begin{gathered}
\mathrm{y}[\mathrm{n}]=-\sum_{K=1}^{N} a_{k} y[n-k]+\sum_{K=0}^{M} b_{k} x[n-k] \\
a_{k} \text { and } b_{k} \text { are the filter coefficients }
\end{gathered}
$$

Infinite Impulse Response (IIR) Filters

- IIR filters outputs depends on N past outputs and M past inputs.
- The impulse response samples getting smaller and smaller but they never settle to zero.

Examples

Determine the first three samples in the impulse response for the IIR filter.

$$
y[n]-0.2 y[n-1]=x[n]+x[n-1]
$$

Sol:

Substituting $\delta[\mathrm{n}]$ for $x[n]$ and $h[\mathrm{n}]$ for $y[n]$.

$$
\begin{aligned}
& h[n]-0.2 h[n-1]=\delta[n]+\delta[n-1] \\
& h[n]=0.2 h[n-1]+\delta[n]+\delta[n-1]
\end{aligned}
$$

Examples

$$
\begin{aligned}
h[0] & =0.2 h[0-1]+\delta[0]+\delta[0-1] \\
h[0] & =0.2 h[-1]+\delta[0]+\delta[-1] \\
& =0.0+1.0+0.0=1.0 \\
h[1] & =0.2 h[1-1]+\delta[1]+\delta[1-1] \\
& =0.2(1)+0.0+1.0=1.2
\end{aligned}
$$

Examples

$$
\begin{aligned}
h[2] & =0.2 h[2-1]+\delta[2]+\delta[2-1] \\
& =0.2(1.2)+0.0+0.0=0.24 \\
h[3] & =0.2 h[3-1]+\delta[3]+\delta[3-1] \\
& =0.2(0.24)+0.0+0.0=0.048
\end{aligned}
$$

Examples

Determine the first four samples in the impulse response for the IIR filter.

$$
y[n]-0.4 y[n-1]=x[n]-x[n-1]
$$

Sol:

Substituting $\delta[\mathrm{n}]$ for $x[n]$ and $h[\mathrm{n}]$ for $y[n]$.

$$
\begin{aligned}
& h[n]-0.4 h[n-1]=\delta[n]-\delta[n-1] \\
& h[n]=0.4 h[n-1]+\delta[n]-\delta[n-1]
\end{aligned}
$$

Examples

$$
\begin{aligned}
h[0] & =0.4 h[-1]+\delta[0]-\delta[n-1] \\
& =0.4(0.0)+1.0-0.0=1.0 \\
h[1] & =0.4 h[0]+\delta[1]-\delta[0] \\
& =0.4(1.0)+0.0-1.0=-0.6 \\
h[2] & =0.4 h[1]+\delta[2]-\delta[1] \\
& =0.4(-0.6)+0.0-0.0=-0.24
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \begin{aligned}
h[3] & =0.4 h[2]+\delta[3]-\delta[2] \\
& =0.4(-0.24)+0.0-0.0=-0.096 \\
h[4] & =0.4 h[3]+\delta[4]-\delta[3] \\
& =0.4(-0.96)+0.0-0.0=-0.0384 \\
h[5] & =0.4 h[4]+\delta[5]-\delta[4] \\
& =0.4(-0.0384)+0.0-0.0=-0.01536
\end{aligned}
\end{aligned}
$$

