
Assistant Lecturer Miami Abdul Aziz 1

Repetition Structures

Programmers use the repetition structure, referred to more simply as a loop, when they need

the computer to repeatedly process one or more program instructions. The loop contains a

condition that controls whether the instructions are repeated. Like the condition in a

selection structure, the condition in a repetition structure must evaluate to either true or false.

In many programming languages, the condition can be phrased in one of two ways: It can

either specify the requirement for repeating the instructions or specify the requirement for

not repeating them. The requirement for repeating the instructions is referred to as the

looping condition because it indicates when the computer should continue “looping” through

the instructions. The requirement for not repeating the instructions is referred to as the loop

exit condition because it tells the computer when to exit (or stop) the loop. Figure 2-36

shows examples of both types of conditions that you use every day. The conditions are

shaded in the figure.

Figure 2-36 Examples of familiar looping conditions and loop exit conditions

The condition in a loop can appear at either the top or the bottom of the loop. When the

condition is at the top of the loop, the loop is referred to as a pretest loop because the

condition is evaluated before the instructions within the loop are processed. When the

condition is at the bottom of the loop, the loop is referred to as a posttest loop because the

condition is evaluated after the instructions within the loop are processed.

The Visual Basic language provides three different statements for coding loops: Do…Loop,

For…Next, and For Each…Next. The Do…Loop and For…Next statements are covered in

this semester.

AL-Mustaqbal University College / Department of Medical Instrumentation Techniques Engineering

………………………………………………………………………………………………..
Computer applications / Second Class / First Semester 2021-2022 / Prepared By: Miami Abdul Aziz

 LEC.13

2

Assistant Lecturer Miami Abdul Aziz 2

Do…Loop Statement (Pretest Loop)

Figure 2-37 shows the syntax for using the Do…Loop statement to code a pretest loop. The

examples in this Figure display the numbers 1 through 5 in a label control. The loop’s

condition, which must follow either the keyword While or the keyword Until, can be phrased

as either a looping condition or a loop exit condition. You use the While keyword in a

looping condition to specify that the loop body should be processed while (in other words, as

long as) the condition is true. You use the Until keyword in a loop exit condition to specify

that the loop body should be processed until the condition becomes true, at which time the

loop should stop. Like the condition in an If…Then…Else statement, the condition in a

Do…Loop statement can contain variables, named constants, literals, properties, methods,

keywords, and operators; it also must evaluate to a Boolean value. The condition is

evaluated with each repetition of the loop and determines whether the computer processes

the loop body. Figure 2-37 includes examples of using the Do…Loop statement to code the

pretest loops. In each example, the loop will stop when the value in intNum is 6.

Assistant Lecturer Miami Abdul Aziz 3

Figure 2-37 Syntax and examples of using the Do…Loop statement to code a pretest loop

It is often easier to understand loops by viewing them in flowchart form. Figure 2-38 shows

the flowcharts associated with the examples from Figure 2-37. Like the condition in a

selection structure, the condition in a flowchart is represented by a diamond. The diamond is

called the decision symbol. The condition is shaded in each decision symbol shown in

Figure 2-38. Like the diamond in a selection structure, the diamond in a repetition structure

has two flowlines leading out of the symbol. The flowlines are usually marked with a T (for

True) and an F (for False); however, they can be marked with a Y and an N (for Yes and

No).

Assistant Lecturer Miami Abdul Aziz 4

Figure 2-38 Flowcharts for the loop examples from Figure 2-37

Do…Loop Statement (Posttest Loop)

Figure 2-39 shows the syntax for using the Do…Loop statement to code a posttest loop.

Except for the location of the keyword (While or Until) and the condition, the syntax is the

same as the one shown earlier in Figure 2-37. The figure also shows how you can modify the

Do…Loop statements from Figure 2-37 to use posttest loops rather than pretest ones. (The

for the posttest loops are shown earlier in Figure 2-38.) In each example, the loop will stop

when the value in num is 6. The difference between a pretest loop and a posttest loop is that

the instructions in a posttest loop will always be processed at least once, whereas the

instructions in a pretest loop may never be processed. For example, if the num variable was

initialized to 6 (rather than to 1), the conditions in both pretest loops would prevent the

instructions in those loops from being processed. The instructions in both posttest loops, on

the other hand, would be processed once before the conditions were evaluated the first time.

Assistant Lecturer Miami Abdul Aziz 5

Figure 2-39 Syntax and examples of using the Do…Loop statement to code a posttest loop

To code and then test the Do…Loop Posttest application:

1. Open the Code Editor window and enter the Do…Loop statement shown in either of the

examples from Figure 2-39.

2. Save the solution and then start the application. Click the Display button to display the

numbers from 1 to 5 in the label control.

3. Click the Exit button. Now change the 1 in the Dim statement to 6. Save the solution and

then start the application. Click the Display button. Because the posttest loop’s condition is

not evaluated until after the instructions in the loop are processed the first time, the number 6

appears in the label control, as shown in Figure 2-40.

Assistant Lecturer Miami Abdul Aziz 6

Figure 2-40 Result of the loop instructions being processed before the condition is evaluate

Infinite Loops

A loop that has no way to end is called an infinite loop or an endless loop. An infinite loop is

many times created when the loop body does not contain an instruction that will make either

the looping condition evaluate to False or the loop exit condition evaluate to True. You can

stop an infinite loop by clicking Debug on the menu bar and then clicking Stop Debugging.

Or, you can click the Stop Debugging button (the red square) on the Standard toolbar.

To create and then stop an infinite loop:

1. Open the Code Editor window of any example from the examples above (in case pretest

or posttest loop) and turn the (num =num + 1) assignment statement into a comment by

inserting an apostrophe (') before it. Notice that the loop body no longer provides an

instruction that can change the value stored in the num variable from its initial value of 1 to a

value that can stop the loop—in this case, 6.

2. Save the solution and then start the application. Click the Display button. Wait a few

seconds and then click the Exit button. Notice that the Exit button does not respond to its

Click event. Click the Display button again. The Display button also does not respond to its

Click event. Neither button responds because the Do…Loop statement is in an infinite loop.

The loop has no way to stop because without the (num = num + 1) statement, the num

variable’s value remains at 1.

3. Click the Stop Debugging button (the red square) on the Standard toolbar to stop the

loop.

