
Matlab – Loop types

There may be a situation when you need to execute a block of code several times. In general,

statements are executed sequentially. The first statement in a function is executed first, followed by the

second, and so on.

Programming languages provide various control structures that allow

for more complicated execution paths.

A loop statement allows us to execute a statement or group of

statements multiple times. The drawing shows the general form of a

loop statement for most programming languages.

Matlab provides various types of loops to handle looping requirements

including: while loops, for loops, and nested loops. If you are trying to

declare or write your own loops, you need to make sure that the loops

are written as scripts and not directly in the Command Window.

To start a new script, locate the button in the upper left corner of the window labeled New Script.

While Loop

The while loop repeatedly executes statements while a specified condition is true.

The syntax of a while loop in MATLAB is as following:

while <expression>

 <statements>

end

The while loop repeatedly executes a program statement(s) as long as the expression remains true.

An expression is true when the result is nonempty and contains all nonzero elements (logical or real

numeric). Otherwise, the expression is false.

Example

a = 10;

% while loop execution

while(a < 20)

 fprintf('value of a: %d\n', a);

 a = a + 1;

end

When the code above is executed, the result will be:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

For loop

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to

execute a specific number of times.

The syntax of a for loop in MATLAB is as following:

for index = values

 <program statements>

 ...

end

values can be one of the following forms:

initval:endval --- increments the index variable from initval to endval by 1, and repeats execution

of program statements until index is greater than endval.

Initval:step:endval --- increments index by the value step on each iteration, or decrements when step is

negative.

valArray --- creates a column vector index from subsequent columns of array valArray on each iteration.

For example, on the first iteration, index = valArray(:,1). The loop executes for a maximum of n times,

where n is the number of columns of valArray, given by numel(valArray, 1, :). The input valArray can be

of any MATLAB data type, including a string, cell array, or struct.

Example

for a = 10:20

 fprintf('value of a: %d\n', a);

end

When the code above is executed, the result will be:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

value of a: 20

for a = 1.0: -0.1: 0.0

 disp(a)

end

When the code above is executed, the result is:

1

9/10

4/5

7/10

3/5

1/2

2/5

3/10

1/5

1/10

0

for a = [24,18,17,23,28]

 disp(a)

end

When the code above is executed, the result will be:

24

18

17

23

28

The Nested Loops

Matlab also allows to use one loop inside another loop.

The syntax for a nested for loop statement in MATLAB is as follows:

for m = 1:j

 for n = 1:k

 <statements>;

 end

end

The syntax for a nested while loop statement in MATLAB is as follows:

while <expression1>

 while <expression2>

 <statements>

 end

end

Example

We can use a nested for loop to display all the prime numbers from 1 to 100.

for i=2:100

 for j=2:100

 if(~mod(i,j))

 break; % if factor found, not prime

 end

 end

 if(j > (i/j))

 fprintf('%d is prime\n', i);

 end

end

When the code above is executed, the result is:

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a scope, all

automatic objects that were created in that scope are destroyed. The scope defines where the variables

can be valid in Matlab, typically a scope within a loop body is from the beginning of conditional code to

the end of conditional code. It tells Matlab what to do when the conditional code fails in the loop.

Matlab supports both break statement and continue statement.

Break statement:

The break statement terminates execution of for or while loops.

Statements in the loop that appear after the break statement are

not executed.

In nested loops, break exits only from the loop in which it occurs.

Control passes to the statement following the end of that loop.

Example

a = 10;

% while loop execution

while (a < 20)

 fprintf('value of a: %d\n', a);

 a = a+1;

 if(a > 15)

 % terminate the loop using break statement

 break;

 end

end

When the code above is executed, the result is:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

Continue Statement

The continue statement is used for passing control to thenext

iteration of a for or while loop.

The continue statement in MATLAB works somewhat like the break

statement. Instead of forcing termination, however, 'continue'

forces the next iteration of the loop to take place, skipping any

code in between.

Example

a = 10;

%while loop execution

while a < 20

 if a == 15

 % skip the iteration

 a = a + 1;

 continue;

 end

fprintf('value of a: %d\n', a);

a = a + 1;

end

When the code above got executed, the result is:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

