

Advanced Analysis for Pharmacy Students

By Professor Dr. Mohie Sharaf El Din

NMR-Spectroscopy

H¹-Nuclear Magnetic Resonance C¹³-Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Spectroscopy Structure Determination:

Introduction to NMR Spectroscopy

- Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by <u>identifying carbon-hydrogen frameworks</u> within molecules.
- Two common types of NMR spectroscopy are used to characterize organic structure:
- 1H NMR is used to determine the type and number of H atoms in a molecule;
- 13C NMR is used to determine the type of carbon atoms in the molecule.

- •The source of energy in NMR is radio waves which have long wavelengths, and thus low energy and frequency.
- ·When low-energy radio waves interact with a molecule, they can change the <u>nuclear spins</u> of some elements, including ¹H and ¹³C.
- ·When a charged particle such as a proton spins on its axis, it creates a magnetic field. Thus, the nucleus can be considered to be a tiny bar magnet.

Introduction to NMR Spectroscopy

- ·Normally, these tiny bar magnets are randomly oriented in space.
- ·However, in the presence of a magnetic field B_0 , they are oriented with or against this applied field.
- ·More nuclei are oriented with the applied field because this arrangement is lower in energy.
- •The energy difference between these two states is very small (<0.1 cal).

A spinning proton creates a magnetic field.

With no external magnetic field...

The nuclear magnets are randomly oriented.

In a magnetic field...

The nuclear magnets are oriented with or against B.

Introduction to NMR Spectroscopy

- In a magnetic field, there are now two energy states for a proton: a lower energy state with the nucleus aligned in the same direction as BO, and a higher energy state in which the nucleus aligned against BO.
- · When an external energy source (hv) that matches the energy difference (ΔE) between these two states is applied, energy is absorbed, causing the nucleus to "spin flip" from one orientation to another.
- The energy difference between these two nuclear spin states corresponds to the low frequency RF region of the electromagnetic spectrum.

Introduction to NMR Spectroscopy

• Thus, two variables characterize NMR: an applied magnetic field BO, the strength of which is measured in tesla (T), and the frequency n of radiation used for resonance, measured in hertz (Hz), or megahertz (MHz)—(1 MHz = 106 Hz).

 A nucleus is in resonance when it absorbs RF radiation and "spin flips" to a higher energy state.

Introduction to NMR Spectroscopy

 The frequency needed for resonance and the applied magnetic field strength are proportionally related:

- The stronger the magnetic field, the larger the energy difference between the two nuclear spin states, and the higher the v needed for resonance.
- NMR spectrometers are referred to as 300 MHz instruments, 500 MHz instruments, and so forth, depending on the frequency of the RF radiation used for resonance.
- These spectrometers use very powerful magnets to create a small but measurable energy difference between two possible spin states.

Introduction to NMR Spectroscopy

An NMR spectrometer. The sample is dissolved in a solvent, usually CDCl₃ (deuterochloroform), and placed in a magnetic field. A radiofrequency generator then irradiates the sample with a short pulse of radiation, causing resonance. When the nuclei fall back to their lower energy state, the detector measures the energy released, and a spectrum is recorded. The superconducting magnets in modern NMR spectrometers have coils that are cooled in liquid helium and conduct electricity with essentially no resistance.

Introduction to NMR Spectroscopy

- Protons in different environments absorb at slightly different frequencies, so they are distinguishable by NMR.
- · The frequency at which a particular proton absorbs is determined by its electronic environment.
- The size of the magnetic field generated by the electrons around a proton determines where it absorbs.
- · Modern NMR spectrometers use a constant magnetic field strength B_0 , and then a narrow range of frequencies is applied to achieve the resonance of all protons.
- Only nuclei that contain odd mass numbers (such as ¹H, ¹³C, ¹⁹F and ³¹P) or odd atomic numbers (such as ²H and ¹⁴N) give rise to NMR signals.

¹H NMR—The Spectrum

 An NMR spectrum is a plot of the intensity of a peak against its chemical shift, measured in parts per million (ppm).

¹H NMR—The Spectrum

- · NMR absorptions generally appear as sharp peaks.
- · Increasing chemical shift is plotted from left to right.
- · Most protons absorb between 0-10 ppm.
- The terms "upfield" and "downfield" describe the relative location of peaks. Upfield means to the right.
 Downfield means to the left.
- NMR absorptions are measured relative to the position of a reference peak at 0 ppm on the d scale due to tetramethylsilane (TMS). TMS is a volatile inert compound that gives a single peak upfield from typical NMR absorptions.

¹H NMR—The Spectrum

• The chemical shift of the x axis gives the position of an NMR signal, measured in ppm, according to the following equation:

```
\frac{\text{chemical shift}}{(\text{in ppm on the }\delta \text{ scale})} \ = \ \frac{\text{observed chemical shift (in Hz) downfield from TMS}}{\nu \text{ of the NMR spectrometer (in MHz)}}
```

- By reporting the NMR absorption as a fraction of the NMR operating frequency, we get units, ppm, that are independent of the spectrometer.
- Four different features of a ¹H NMR spectrum provide information about a compound's structure:
 - a. Number of signals
 - b. Position of signals
 - c. Intensity of signals.
 - d. Spin-spin splitting of signals.

a- ¹H NMR—Number of Signals

- The number of NMR signals equals the number of different types of protons in a compound.
- · Protons in different environments give different NMR signals.
- · Equivalent protons give the same NMR signal.

 To determine equivalent protons in cycloalkanes and alkenes, always draw all bonds to hydrogen.

Draw
$$\stackrel{H}{\overset{H}\overset{Cl}{\overset{H}}\overset{Cl}{\overset{H}}\overset{NOT}\overset{Cl}{\overset{Cl}\overset{H}{\overset{H}}\overset{Cl}{\overset{H}}\overset{NOT}\overset{ClCH=CH_2}\overset{17}$$

¹H NMR—Number of Signals

1 type of H 1 NMR signal

3 types of H's 3 NMR signals

2 types of H's 2 NMR signals

3 types of H's 3 NMR signals

¹H NMR—Number of Signals

 In comparing two H atoms on a ring or double bond, two protons are equivalent only if they are cis (or trans) to the same groups.

¹H NMR—Number of Signals

 Proton equivalency in cycloalkanes can be determined similarly.

b- 1H NMR—Position of Signals

- In the vicinity of the nucleus, the magnetic field generated by the circulating electron decreases the external magnetic field that the proton "feels".
- · Since the electron experiences a lower magnetic field strength, it needs a lower frequency to achieve resonance. Lower frequency is to the right in an NMR spectrum, toward a lower chemical shift, so shielding shifts the absorption upfield.

The induced field decreases the strength of the magnetic field "felt" by the nucleus.

This nucleus is shielded.

¹H NMR—Position of Signals

- · The less shielded the nucleus becomes, the more of the applied magnetic field (B_0) it feels.
- This deshielded nucleus experiences a higher magnetic field strength, to it needs a higher frequency to achieve resonance.
- Higher frequency is to the left in an NMR spectrum, toward higher chemical shift—so deshielding shifts an absorption downfield.
- · Protons near electronegative atoms are deshielded, so they absorb downfield.

¹H NMR—Position of Signals

a. Shielding effects

- · An electron shields the nucleus.
- The absorption shifts upfield.

b. Deshielding effects

- Decreased electron density deshields a nucleus.
- The absorption shifts downfield.

¹H NMR—Position of Signals

- As the electron density around the nucleus increases, the nucleus feels a smaller resultant magnetic field, so a lower frequency is needed to achieve resonance.
- The absorption shifts upfield.

- As the electron density around the nucleus decreases, the nucleus feels a larger resultant magnetic field, so a higher frequency is needed to achieve resonance.
- The absorption shifts downfield.

¹H NMR—Position of Signals

$$\begin{array}{c} \mathsf{CH_3CH_2CI} \\ \uparrow & \uparrow \\ \mathsf{H_a} & \mathsf{H_b} \end{array}$$

 Because F is more electronegative than Br, the H_b protons are more deshielded than the H_a protons and absorb farther downfield.

• The larger number of electronegative Cl atoms (two versus one) **deshields** H_b more than H_a, so it absorbs **downfield** from H_a.