TUTORIAL

Example1: find equation of line

1- $(-5,10)$ and $(-3,4)$
$2-(-4,-22)$ and $(-6,-34)$

Solution:

1- $\mathrm{m}=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{(4-10)}{(-3+5)}=\frac{-6}{2}=-3$
$\left(y-y_{1}\right)=m\left(x-x_{1}\right)$
$(y-10)=-3(x+5)$
$y-10=-3 x-15$
$y+3 x=-15+10$
$y+3 x=-5$
2- $\mathrm{m}=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{(-34+22)}{(-6+4)}=\frac{-12}{-2}=6$
$\left(y-y_{1}\right)=m\left(x-x_{1}\right)$
$(y+22)=6(x+4)$
$y+22=6 x+24$
$y-6 x=24-22$
$y-6 x=2$

Example 2: Find the equation of a straight line that passes through the points (1, 3) and ($-2,4$).

Solution: To determine the equation of the line, we will use the formula point-slope form.

For this, we first need to find the slope of the line.
1- Slope $=\mathrm{m}=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{(4-3)}{(-2-1)}=\frac{-1}{3}$
Therefore, the equation of the line passing through $(1,3)$ and $(-2,4)$ is
$\left(\mathrm{y}-y_{1}\right)=m\left(\mathrm{x}-x_{1}\right)$
$y-3=\frac{-1}{3}(x-1)$
$\Rightarrow \mathrm{y}-3=\frac{-x}{3}+\frac{1}{3}$
$\Rightarrow \mathrm{y}+\frac{x}{3}=3+\frac{1}{3}$

Example 3: Write the equation of the line with slope $\mathbf{m = - 3}$ and passing through the point $(4,8)$. Write the final equation in slope-intercept form.

Solution:

Using point-slope form, substitute -3 for m and the point $(4,8)$ for $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-8=-3(x-4) \\
y-8=-3 x+12 \\
y+3 x=20
\end{gathered}
$$

example 4: Find a line parallel to the graph of $\frac{y}{3}=x+2$ that passes through the point (3, 0).

Solution:

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
\frac{y}{3}=x+2 \\
y=3 x+6
\end{gathered}
$$

The slope of the given line is 3 . we can substitute $m=3, x=3$, and $\mathrm{y}=0$, The line parallel

$$
\begin{gathered}
m=m^{\prime} \\
y^{-y_{1}=m^{\prime}\left(x-x_{1}\right)} \\
y-0=3(x-3) \\
y-3 x=-9
\end{gathered}
$$

The line parallel to $\mathrm{y}=3 \mathrm{x}+6 \mathrm{y}=3 \mathrm{x}+6$ that passes through $(3,0)$ is $\mathrm{y}=3 \mathrm{x}-9 \mathrm{y}=3 \mathrm{x}-9$.
We can prove this by representing them graphically
Line 1:

$$
\begin{array}{rlrl}
\text { at } \mathrm{y}=0 & 3 \mathrm{c} & \mathrm{y}=3 \mathrm{x}+6 \\
3 \mathrm{x}=6=-6
\end{array} \quad \mathrm{x}=-2 \quad(-2,0)
$$

Line 2 :

$$
\text { at } y=0 \quad-3 x=-9 \quad y-3 x=-9 \quad x=3
$$

Class:First Stage
Subject:Mathmatics
Lecturer: Asst.Lect. Zahraa Kareem Abdullah Email: Zahraa.Kareem@Mustaqbal-College.Edu.Iq
at $x=0$
$y=-9$
$(0,-9)$

