Problem 4

A bar of circular cross-section is subjected to alternating tensile forces varying from a minimum of 200 kN to a maximum of 500 kN . It is to be manufactured of a material with an ultimate tensile strength of 900 MPa and an endurance limit of 700 MPa . Determine the diameter of bar using safety factors of 3.5 related to ultimate tensile strength and 4 related to endurance limit and a stress concentration factor of 1.65 for fatigue load. Use Goodman straight line as basis for design.

Solution

$$
\begin{aligned}
& W_{\min }=200 \mathrm{kN} ; W_{\max }=500 \mathrm{kN} ; \sigma_{u}=900 \mathrm{MPa}=900 \mathrm{~N} / \mathrm{mm}^{2} ; \sigma_{e}=700 \mathrm{MPa} \\
& =700 \mathrm{~N} / \mathrm{mm}^{2} ;(F . S .)_{u}=3.5 ;(F . S .)_{e}=4 ; K_{f}=1.65
\end{aligned}
$$

Let $d=$ Diameter of bar in mm.

$$
\therefore \quad \text { Area, } A=\frac{\pi}{4} \times d^{2}=0.7854 d^{2} \mathrm{~mm}^{2}
$$

We know that mean or average force,

$$
\begin{aligned}
& W_{m}=\frac{W_{\max }+W_{\min }}{2}=\frac{500+200}{2}=350 \mathrm{kN}=350 \times 10^{3} \mathrm{~N} \\
\therefore & \text { Mean stress, } \sigma_{m}=\frac{W_{m}}{A}=\frac{350 \times 10^{3}}{0.7854 d^{2}}=\frac{446 \times 10^{3}}{d^{2}} \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { Variable force, } W_{v}=\frac{W_{\max }-W_{\min }}{2}=\frac{500-200}{2}=150 \mathrm{kN}=150 \times 10^{3} \mathrm{~N} \\
\therefore \quad & \text { Variable stress, } \sigma_{v}=\frac{W_{v}}{A}=\frac{150 \times 10^{3}}{0.7854 d^{2}}=\frac{191 \times 10^{3}}{d^{2}} \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

We know that according to Goodman's formula,

$$
\begin{gathered}
\frac{\sigma_{v}}{\sigma_{e} /(F . S .)_{e}}=1-\frac{\sigma_{m} \cdot K_{f}}{\sigma_{u} /(F . S .)_{u}} \\
\frac{\frac{191 \times 10^{3}}{d^{2}}}{700 / 4}=1-\frac{\frac{446 \times 10^{3}}{d^{2}} \times 1.65}{900 / 3.5} \\
\frac{1100}{d^{2}}=1-\frac{2860}{d^{2}} \quad \text { or } \quad \frac{1100+2860}{d^{2}}=1 \\
d^{2}=3960 \text { or } d=62.9 \text { say } 63 \mathrm{~mm}
\end{gathered}
$$

Problem 5

Determine the thickness of a 120 mm wide uniform plate for safe continuous operation if the plate is to be subjected to a tensile load that has a maximum value of 250 kN and a minimum value of 100 kN . The properties of the plate material are as follows: Endurance limit stress $=225 \mathrm{MPa}$, and Yield point stress $=300 \mathrm{MPa}$. The factor of safety based on yield point may be taken as 1.5 .

Solution

$b=120 \mathrm{~mm} ; W_{\max }=250 \mathrm{kN} ; W_{\min }=100 \mathrm{kN} ; \sigma_{e}=225 \mathrm{MPa}=225 \mathrm{~N} / \mathrm{mm}^{2} ; \sigma_{y}=300$
$\mathrm{MPa}=300 \mathrm{~N} / \mathrm{mm}^{2} ; F . S .=1.5$
Let $t=$ Thickness of the plate in mm .
\therefore Area, $A=b \times t=120 t \mathrm{~mm}^{2}$
We know that mean or average load,

$$
\begin{aligned}
& W_{m}=\frac{W_{\max }+W_{\min }}{2}=\frac{250+100}{2}=175 \mathrm{kN}=175 \times 10^{3} \mathrm{~N} \\
\therefore & \text { Mean stress, } \sigma_{m}=\frac{W_{m}}{A}=\frac{175 \times 10^{3}}{120 t} \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { Variable load, } W_{v}=\frac{W_{\max }-W_{\min }}{2}=\frac{250-100}{2}=75 \mathrm{kN}=75 \times 10^{3} \mathrm{~N} \\
\therefore & \text { Variable stress, } \sigma_{v}=\frac{W_{v}}{A}=\frac{75 \times 10^{3}}{120 t} \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

According to Soderberg's formula,

$$
\begin{aligned}
\frac{1}{F . S} & =\frac{\sigma_{m}}{\sigma_{y}}+\frac{\sigma_{v}}{\sigma_{e}} \\
\therefore \quad \frac{1}{1.5} & =\frac{175 \times 10^{3}}{120 t \times 300}+\frac{75 \times 10^{3}}{120 t \times 225}=\frac{4.86}{t}+\frac{2.78}{t}=\frac{7.64}{t} \\
t & =7.64 \times 1.5=11.46 \text { say } 11.5 \mathrm{~mm}
\end{aligned}
$$

Problem 6

A steel rod is subjected to a reversed axial load of 180 kN . Find the diameter of the rod for a factor of safety of 2 . Neglect column action. The material has an ultimate tensile strength of 1070 MPa and yield strength of 910 MPa . The endurance limit in reversed bending may be assumed to be one-half of the ultimate tensile strength. Other correction factors may be taken as follows: For axial loading $=0.7$; For machined surface $=0.8$; For size $=0.85$;
For stress concentration $=1.0$.

Solution

$$
\begin{aligned}
& W_{\max }=180 \mathrm{kN} ; W_{\min }=-180 \mathrm{kN} ; F . S .=2 ; \sigma_{u}=1070 \mathrm{MPa}=1070 \mathrm{~N} / \mathrm{mm}^{2} ; \sigma_{y}=910 \\
& \mathrm{MPa}=910 \mathrm{~N} / \mathrm{mm}^{2} ; \sigma_{e}=0.5 \sigma_{u} ; K_{a}=0.7 ; K_{s u r}=0.8 ; K_{s z}=0.85 ; K_{f}=1
\end{aligned}
$$

Let $d=$ Diameter of the rod in mm.

$$
\therefore \quad \text { Area, } A=\frac{\pi}{4} \times d^{2}=0.7854 d^{2} \mathrm{~mm}^{2}
$$

We know that the mean or average load,

$$
W_{m}=\frac{W_{\max }+W_{\min }}{2}=\frac{180+(-180)}{2}=0
$$

$\therefore \quad$ Mean stress, $\sigma_{m}=\frac{W_{m}}{A}=0$
Variable load, $\quad W_{v}=\frac{W_{\max }-W_{\min }}{2}=\frac{180-(-180)}{2}=180 \mathrm{kN}=180 \times 10^{3} \mathrm{~N}$
\therefore Variable stress, $\sigma_{v}=\frac{W_{v}}{A}=\frac{180 \times 10^{3}}{0.7854 d^{2}}=\frac{229 \times 10^{3}}{d^{2}} \mathrm{~N} / \mathrm{mm}^{2}$
Endurance limit in reversed axial loading,

$$
\begin{aligned}
\sigma_{e a} & =\sigma_{e} \times K_{a}=0.5 \sigma_{u} \times 0.7=0.35 \sigma_{u} \\
& =0.35 \times 1070=374.5 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned} \quad \cdots\left(\because \sigma_{e}=0.5 \sigma_{u}\right)
$$

We know that according to Soderberg's formula for reversed axial loading,

$$
\begin{aligned}
\frac{1}{F . S} & =\frac{\sigma_{m}}{\sigma_{y}}+\frac{\sigma_{v} \times K_{f}}{\sigma_{e a} \times K_{s u r} \times K_{s z}} \\
\frac{1}{2} & =0+\frac{229 \times 10^{3} \times 1}{d^{2} \times 374.5 \times 0.8 \times 0.85}=\frac{900}{d^{2}} \\
\therefore \quad d^{2} & =900 \times 2=1800 \text { or } d=42.4 \mathrm{~mm}
\end{aligned}
$$

Problem 7

A circular bar of 500 mm length is supported freely at its two ends. It is acted upon by a central concentrated cyclic load having a minimum value of 20 kN and a maximum value of 50 kN . Determine the diameter of bar by taking a factor of safety of 1.5 , size effect of 0.85 , surface finish factor of 0.9 . The material properties of bar are given by : ultimate strength of 650 MPa , yield strength of 500 MPa and endurance strength of 350 MPa .

Solution

$l=500 \mathrm{~mm} ; W_{\text {min }}=20 \mathrm{kN}=20 \times 103 \mathrm{~N} ; W_{\max }=50 \mathrm{kN}=50 \times 103 \mathrm{~N} ; F . S .=1.5 ; K_{s z}=$ $0.85 ; K_{\text {sur }}=0.9 ; \sigma_{u}=650 \mathrm{MPa}=650 \mathrm{~N} / \mathrm{mm}^{2} ; \sigma_{y}=500 \mathrm{MPa}=500 \mathrm{~N} / \mathrm{mm}^{2} ; \sigma_{e}=350$ $\mathrm{MPa}=350 \mathrm{~N} / \mathrm{mm}^{2}$

Let $d=$ Diameter of the bar in mm.
We know that the maximum bending moment,

$$
M_{\max }=\frac{W_{\max } \times l}{4}=\frac{50 \times 10^{3} \times 500}{4}=6250 \times 10^{3} \mathrm{~N}-\mathrm{mm}
$$

and minimum bending moment,

$$
M_{\min }=\frac{W_{\min } \times l}{4}=\frac{20 \times 10^{3} \times 500}{4}=2550 \times 10^{3} \mathrm{~N}-\mathrm{mm}
$$

\therefore Mean or average bending moment,

$$
M_{m}=\frac{M_{\max }+M_{\min }}{2}=\frac{6250 \times 10^{3}+2500 \times 10^{3}}{2}=4375 \times 10^{3} \mathrm{~N}-\mathrm{mm}
$$

and variable bending moment,

$$
M_{v}=\frac{M_{\max }-M_{\min }}{2}=\frac{6250 \times 10^{3}-2500 \times 10^{3}}{2}=1875 \times 10^{3} \mathrm{~N}-\mathrm{mm}
$$

Section modulus of the bar,

$$
Z=\frac{\pi}{32} \times d^{3}=0.0982 d^{3} \mathrm{~mm}^{3}
$$

\therefore Mean or average bending stress,

$$
\sigma_{m}=\frac{M_{m}}{Z}=\frac{4375 \times 10^{3}}{0.0982 d^{3}}=\frac{44.5 \times 10^{6}}{d^{3}} \mathrm{~N} / \mathrm{mm}^{2}
$$

and variable bending stress,

$$
\sigma_{v}=\frac{M_{v}}{Z}=\frac{1875 \times 10^{3}}{0.0982 d^{3}}=\frac{19.1 \times 10^{6}}{d^{3}} \mathrm{~N} / \mathrm{mm}^{2}
$$

We know that according to Goodman's formula,

$$
\begin{align*}
\frac{1}{F . S .} & =\frac{\sigma_{m}}{\sigma_{u}}+\frac{\sigma_{v} \times K_{f}}{\sigma_{e} \times K_{s u r} \times K_{s z}} \\
\frac{1}{1.5} & =\frac{44.5 \times 10^{6}}{d^{3} \times 650}+\frac{19.1 \times 10^{6} \times 1}{d^{3} \times 350 \times 0.9 \times 0.85} \tag{f}\\
& =\frac{68 \times 10^{3}}{d^{3}}+\frac{71 \times 10^{3}}{d^{3}}=\frac{139 \times 10^{3}}{d^{3}} \\
\therefore \quad d^{3}= & 139 \times 10^{3} \times 1.5=209 \times 10^{3} \text { or } d=59.3 \mathrm{~mm}
\end{align*}
$$

and according to Soderberg's formula,

$$
\begin{align*}
\begin{aligned}
\frac{1}{F . S .} & =\frac{\sigma_{m}}{\sigma_{y}}+\frac{\sigma_{v} \times K_{f}}{\sigma_{e} \times K_{s u r} \times K_{s z}} \\
\frac{1}{1.5} & =\frac{44.5 \times 10^{6}}{d^{3} \times 500}+\frac{19.1 \times 10^{6} \times 1}{d^{3} \times 350 \times 0.9 \times 0.85} \\
& =\frac{89 \times 10^{3}}{d^{3}}+\frac{71 \times 10^{3}}{d^{3}}=\frac{160 \times 10^{3}}{d^{3}} \\
\therefore \quad d^{3} & =160 \times 10^{3} \times 1.5=240 \times 10^{3} \quad \text { or } d=62.1 \mathrm{~mm}
\end{aligned}
\end{align*}
$$

Taking larger of the two values, we have $d=62.1 \mathrm{~mm}$

