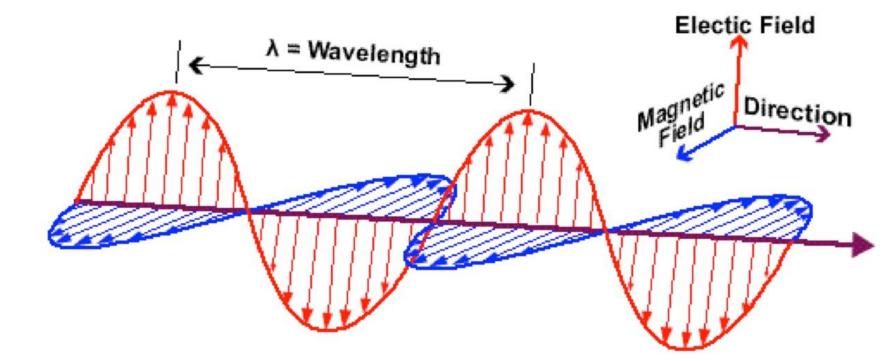


Advanced Analysis for Pharmacy Students

By Professor Dr. Mohie Sharaf El Din


Acorrding to type of *energy transfer*; spectroscopy can be classified into

Electromagnetic Radiation

Properties :

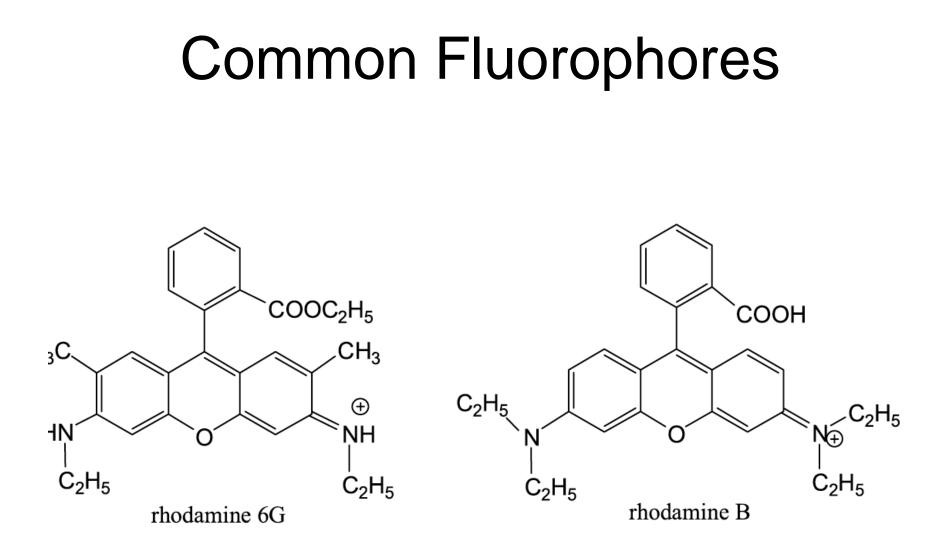
as waves

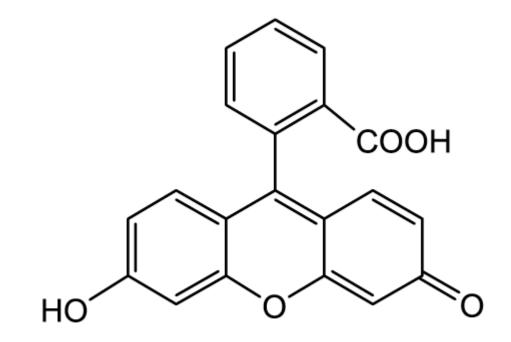
Emission Spectroscopy

Photoluminescence ; Spectroluminescence

- a. <u>Fluorescence.....b. Phosphorescence</u> FLUORESCENCE
- FLUORESCENCE is the light emitted by an atom or molecule after a finite duration subsequent to the <u>absorption</u> of electromagnetic energy.
 Absorbance is the first step in Fluorescence
- It is an electronic transit for an ion that promotes an electron from the ground state to an unoccupied orbital after absorption of a photon.

Energy levels in molecules

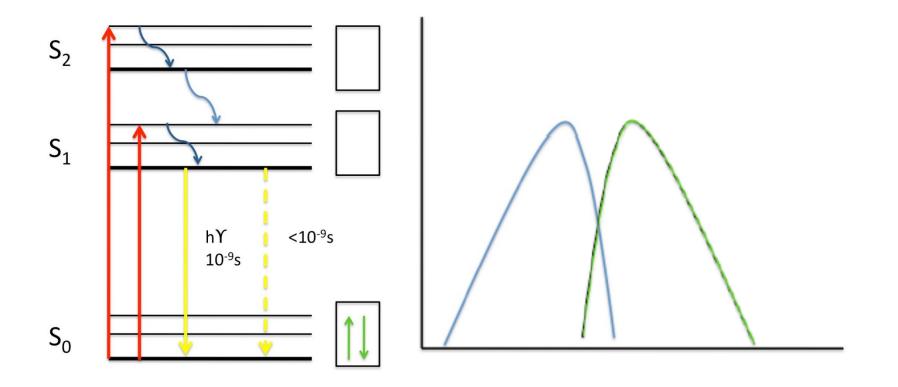

$$E_{n,v,r} = E_n + E_v + E_r$$


where

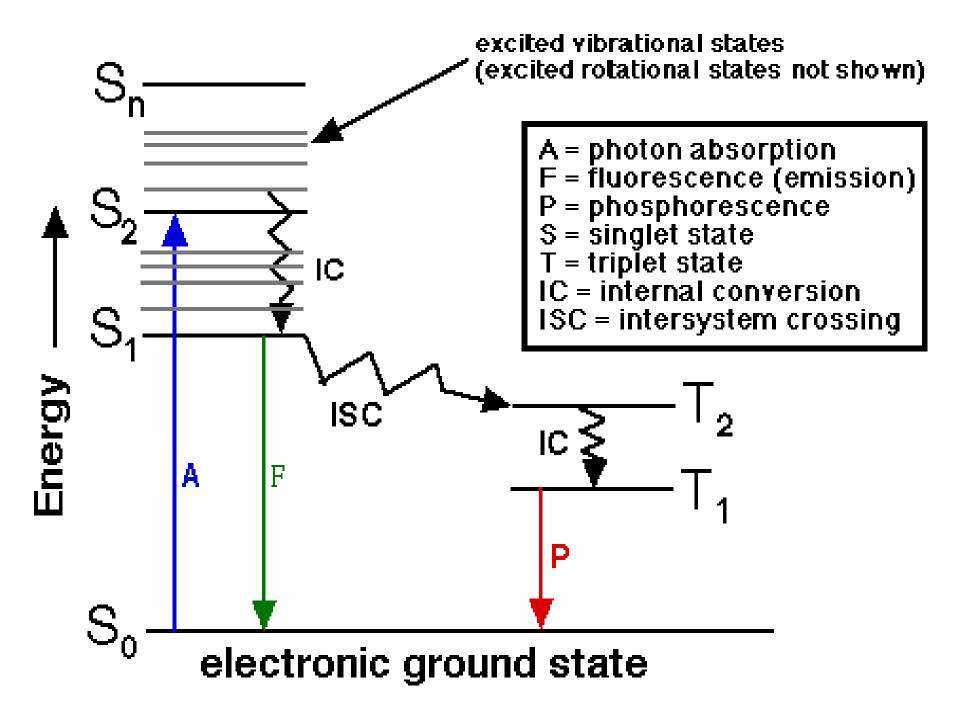
- E_n is the electronic energy,
- E_v the vibrational energy,
- *E_r* the rotational energy
- $E_n >> E_v >> E_r$
- E_n often in the visible range,
- E_v in the IR range,
- *E_rin the* microwave range.

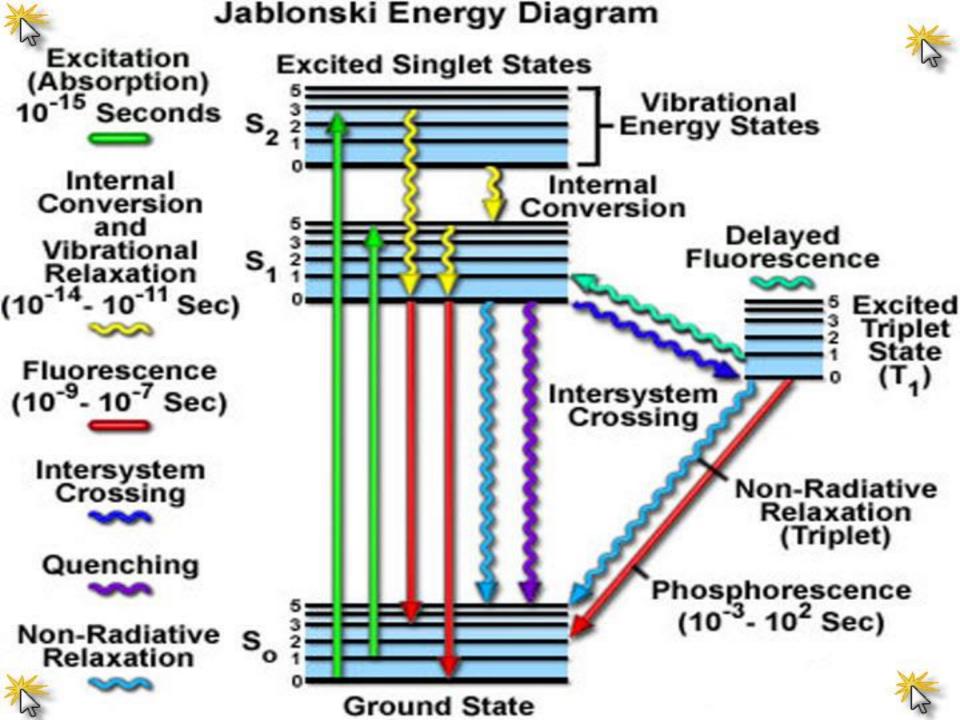
Photoluminescence

- Molecules that have an electronic excitation are *excited*
- Molecules that have a vibrational excitation are hot
- With light absorption, molecules may become *hot and excited*
- Process that leads to excited molecules can be *physical* (e.g. absorption of light), mechanical (e.g. friction), or chemical (e.g. reactions)
- When excited molecular states decay back to the ground state, resulting in the emission of light, they are undergoing a <u>luminescence process</u>
- Generation of excited molecules by light absorption, that then decay emitting visible light, is <u>photoluminescence</u>
- Photoluminescence processes are divided into 2 classes:
 <u>– Fluorescence and Phosphorescence</u>



fluorescein


What is Fluorescence?


• FLUORESCENCE is the light emitted by an atom or molecule after a finite duration subsequent to the absorption of electromagnetic energy.

PRINCIPLES:

- When a molecule of substance absorbs EMR, the molecule is excited by absorption of photon (energy).
- Part of this energy is usually lost as heat (deactivation of the molecule via collisions with certain molecules of solvent present)
 - then the excited electron drops back to the ground state by re-emitting a photon of lower energy (at longer wavelength) than was absorbed

2 singlet excited state:-

an excited state in which all electron spins are paired.

3 triplet excited state:-

an excited state in which all electron spins are unpu

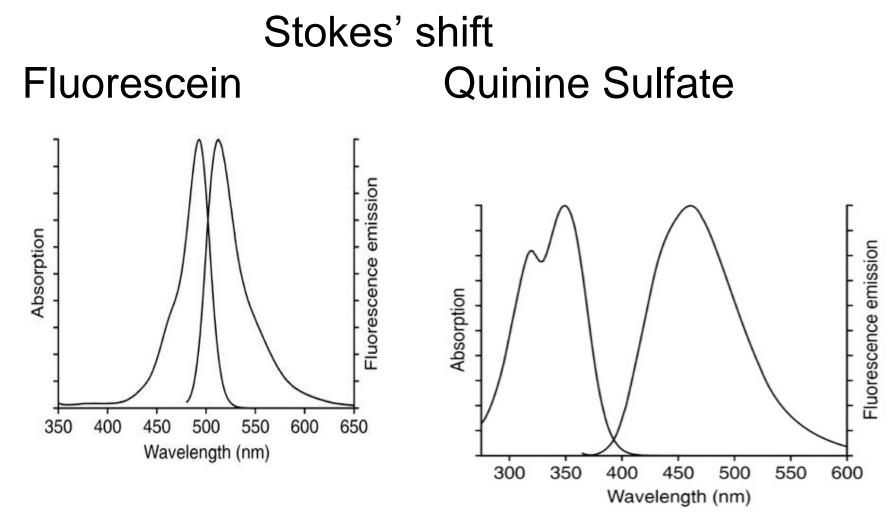
singlet ground state

singlet excited state

triplet excited state

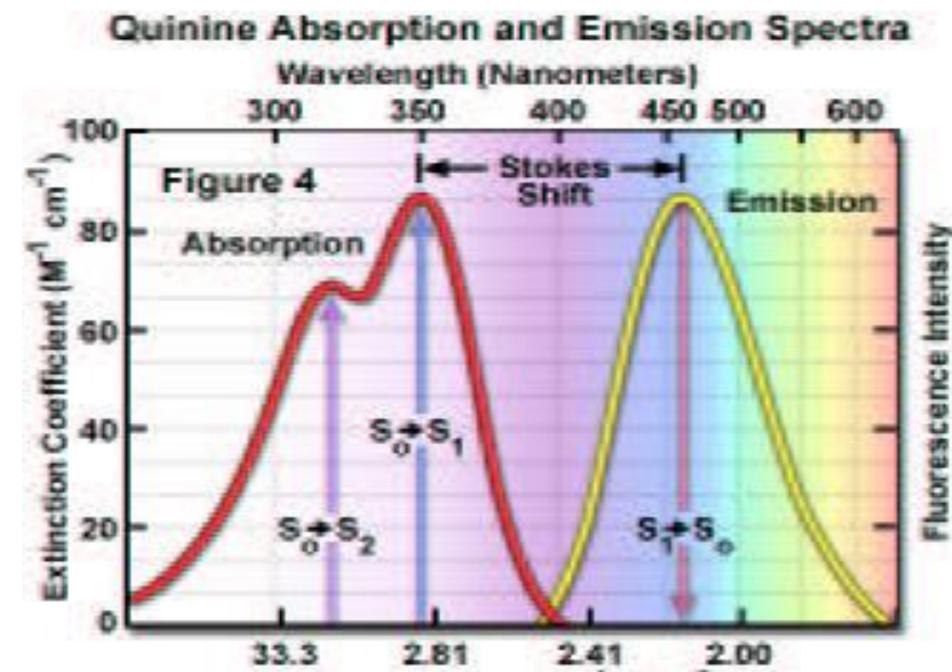
fluoroescence is the emission of a photon resulting in return of excited electron to its ground state without change in its spine

phosphorescence is the emission of a photon resulting in return of excited electron to a lower energy state with opposite spine direction


The process:

- After <u>absorption</u> of a photon (a process takes 10⁻¹⁵ s) by the fluorophore, electronic transition to higher energy level (excited) state, (transition from the lowest vibrational level of the ground state to one of the vibrational levels of the electronic excited states (S1, S2). Absorption spectrum of the molecule will observed.
- An internal conversion takes place when the excited molecule passes from the vibrational level of the higher excited electronic state to another higher vibrational level of S1 (iso energetic) with the excited state , this process is called <u>vibrational</u> relaxation

- At this state the excess energy of the excited molecule is removed by collision with solvent molecule (rapidly within 10⁻¹² s).
- Once the molecule reaches the first excited singlet and internal conversion occur (within 10⁻⁸s) the electrons return to the ground state by emission of radiation (photons) at longer wavelength (less energy),
- However the emitted radiation wavelengths is independent of the wavelength of excitation, but the intensity of the emitted radiation will be proportional to the intensity of incident radiation (i.e. number of photon absorbed).
- This emission process is known as "FLUORESCENCE "


- Sometimes certain molecules exhibit intersystem crossing when the molecule in its excited state transfers to lower energy triplet state (one electron reverse its spin), the electron can return to the ground state by emission of a photon, this process is referred to as "PHOSPHORESCENCE".
- Phosphorescence is much longer lived than fluorescence (> ¹⁰⁻⁴ s).
- One can observe phosphorescent substance even when the excitation source is removed (it is not possible for the eye to observe fluorescence emission after removal of the excitation source (usually UV radiation).

- Fluorescence and phosphorescence are a like in that excitation is brought about by absorption of photons, but phosphorescence is much longer lived than fluorescence. The two phenomena are referred to by the term " PHOTOLUMINESCENCE " "CHEMILUMINESCENCE" is based upon that the excited species is formed as a product of a chemical reaction.
- Measurement of the intensity of photoluminescent or chemiluminescent radiation permits quantitative determination of a variety of organic and inorganic species.

Stokes shift is the difference between positions of the band maxima of the absorption and emission spectra of the same electronic transition. Stokes shift can be calculated from λ max of Abs and Fluorescence spectrum

Convert Abs λ max and Fluo. λ max to wavenumbers to get Δv Fluorescein $\Delta v = 1444$ cm Quinine sulfate = 6100 cm

Wavenumber (cm⁻¹ x 10⁻³)

<u>Advantage of</u> photoluminescence :

- 1 It has higher sensitivity
- 2 It has large linear concentration range
- 3 It has high selectivity

However the luminescent methods are much less widely applicable than absorption methods because of the relatively limited number of chemical systems that can be made to produce luminescent radiation.

Variables that affect fluorescence and phosphorescence :

- Both molecular structure and chemical environments are determine wither a substance will or will not fluoresce, also the intensity of emission.
- Quantum efficiency :
- Quantum efficiency is the ratio of the number of molecules that fluoresce to the total number of excited molecules. The quantum efficiency may approach unity. Chemical species that do not fluoresce have quantum efficiency equal zero.

- Transition types in fluorescence :
- Fluorescence seldom results from absorption of UV radiation of wavelengths lower than 250 nm because such radiation is highly energetic to cause deactivation of the excited state causing dissociation or rupture of bonds ($\sigma \sigma^*$).
- Fluorescence arises most commonly from π π* or n – π* transition, however fluorescence is more commonly associated with π – π* than with n – π* transition, because π – π* possess shorter lifetime.

Chemical Structure and fluorescence :

- 1 –The most intense fluorescence is found in aromatic compounds (with low energy $\pi \pi^*$ transition) .
- 2 Aliphatic and alicyclic highly conjugated double bond structures may also exhibit fluorescence (less frequently than aromatic).
- 3 Unsubstituted aromatic hydrocarbons : The quantum efficiency increase with increasing number of rings .The quantum efficiency increase with increasing their degree of condensation
- 4 Simple heterocyclic (pyridine , furane , thiophene , pyrole) do not exhibit fluorescence (n – π^* transition).

- 5 Heterocyclic compounds fused with benzene ring, do fluoresce (quinoline, indole).
- 6 Subsitution on benzene ring causes shifts in absorption wavelength and corresponding changes in fluorescence peaks, in addition to fluorescence efficiency.
- 7 Halogen substitution <u>decrease fluorescence</u> by increase atomic number (I > Br > CI); increase intersystem crossing to triplet state).
- 8 Carboxylic acid or carbonyl group on aromatic ring inhibits fluorescence.
- 9 –Fluorescence is particularly favored in molecules that possess rigid structure .
- 10- electrons donating groups enhance fluorescence e.g. NH₂, OH, OCH₃, NHCH₃, F (exception).
- 11- electron withdrawing substituents decrease (quench) fluoresce. CI, Br, I, COOH, NO₂, NHCOCH₃

Temperature and solvent :

- Quantum efficiency <u>decreases</u> with increasing temperature (temperature improves the probability for deactivation by external conversion).
- 2 Decrease in solvent viscosity will decrease quantum efficiency .
- 3 Fluorescence of molecules decrease by solvents containing heavy atoms (CBr₄, EtI)
- 4 Polar solvents inhance fluorescence .

Effect of pH :

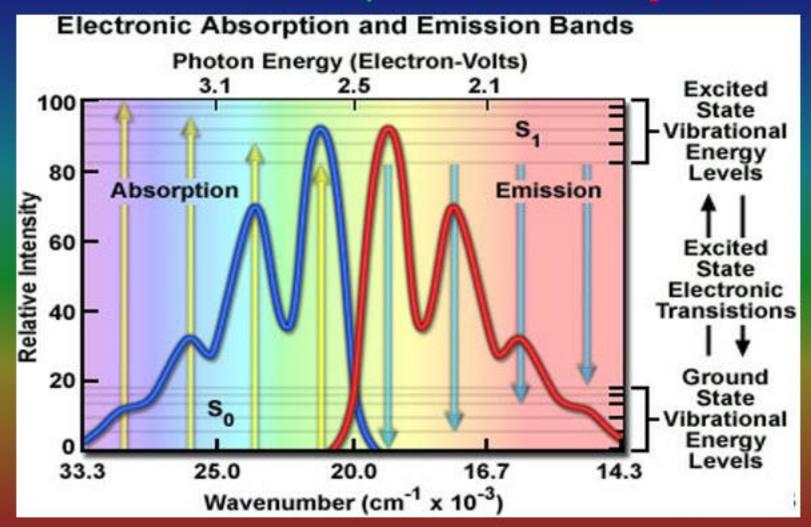
Aromatic compounds with acidic or basic substituents are usually pH dependent, bath wavelength and emission intensity are different for ionized and non ionized forms (fluorescent behavior as a function of pH has been used as acid – base indicator).

Dissolved Oxygen :

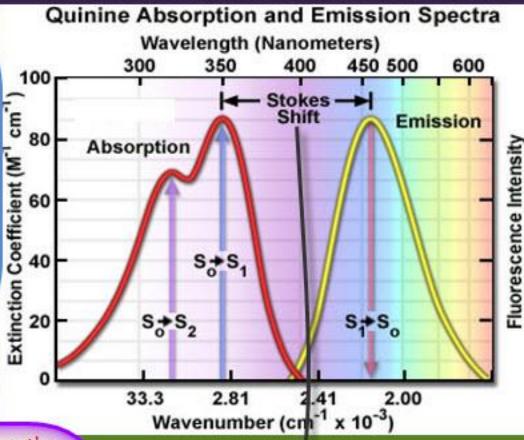
Dissolved Oxygen reduces the emission intensity of fluorescent solution (quenching effect).

- Fluorescence Quenching :
- Quenching of fluorescent by substance that compete for the electronic excitation energy and decrease the quantum efficiency e.g. I⁻ and Br⁻ substituents.
- Such substances may be determined indirectly by measuring the extend of fluorescence quenching.
- A colored species in solution with fluorescent species may interfere by absorbing the fluorescent radiation.
- This phenomenon is called "Inner Filter Effect" e.g. $Cr_2O_7^{2-}$ solution has absorption peaks at 254 and 348 nm , these peaks overlap with excitation (275 nm) and emission (350 nm) peaks for tryptophane .
- The inner filter effect can also arise from too high concentration of the fluorophore itself (some of the analyte molecules will absorb the emitted radiation of others).

Practical considerations :


- 1 The fluorometric analysis is extremely sensitive (up to ppb).
- 2 Dilute solution is less stable
- 3 Adsorption onto the surface of the container (add polar solvent)
- 4 Oxidation of trace substance may occur
- 5 Photodecomposition is more likely to occur at low concentration . The measurements should be therefore made rapidly.

Emission and Excitation Spectra :


- Excitation spectrum measure the luminescence intensity at fixed emission wavelength while the excitation wavelength is varied .
- Fluorescence and phosphorescence spectra
 - These spectra measure the emission intensity at fixed excitation wavelength as a function of wavelength .
 - Fluorescence usually occurs at wavelengths that are longer than the excitation wavelength .

thus the propability of an electron returning to a particular vibrational energy level in the ground state is simillar to the propability of that electron position in the ground state before excitation.

this concept is termed as Mirror image rule.

quinine does not adhere to the mirror image rule as it has *single* peak in emission spectrum and *two* peaks in the excitation spectrum. as energy of fluoroescence emission is lower than the energy of absorption the resulting emitted photons have less energy and are shifted to longer wavelenth (Stroke shift) that occurs for all fluorophores in solution.

Practically , Stroke shift is measured as the difference between the maximun wavelenths in the excitation and emission spectra of a particular pholorochrome or fluorophore. Calculate the Stroke shift for Quinine??

- Phosphorescence bands are generally found at higher wavelengths than fluorescence bands, because the excited triplet state is lower in energy than the corresponding singlet state.
- The excitation spectrum usually corresponds closely in shape to the absorption spectrum of the molecule
- There is frequently (but not necessarily) a close relationship between the structure of the excitation spectrum and the structure of the emission spectrum (mirror image).
- Both the quantum efficiency and the shape of the emission spectrum are independent of the wavelength of the exciting light.
- Only those molecules that will absorb radiation , usually in UV- radiation (> 250 nm) , can fluoresce .
- The emission radiation is usually in the visible region

Fluorescence – Concentration

relationship :

 The fluorescence intensity "F" is proportional to the radiant power of the excitation beam that absorbed by the fluorescent species :

$$\mathsf{F} = \mathsf{K}(\mathsf{Po} - \mathsf{P})$$

where K is constant dependant on quantum efficiency

• From Beer;s law

$$A = \log Po/P = abc$$

P/Po = 10^{-abc}
F = k Po (1 - 10^{-abc})

F = 2.3 K abc Po (at dilute solution,

A < 0.05)

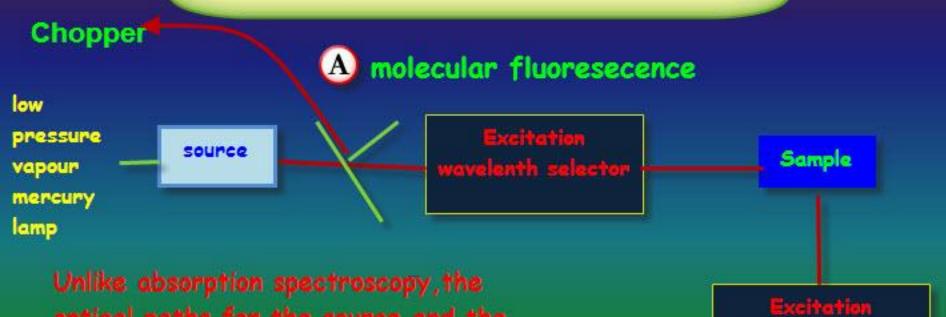
At constant Po

$$F = KC$$

 Plot of fluorescence intensity F of a solution versus concentration of the emitted species, C, should be linear (at low concentration, where A < 0.05)

Deviation :

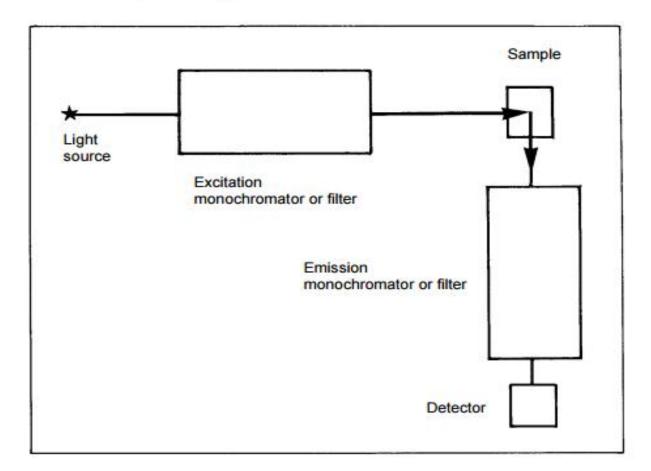
- 1 At higher concentration
- 2 Self quenching (collesion between excited molecules)
- 3 Self absorption (when wavelength of emission and absorption are overlapped).


Instrument : Spectrofluorometer

- 1 UV source: **mercury vapor lamp** : giving line source (365 nm , 520 nm) **High pressure xenon lamp**: used for scanning spectrum
- 2 Filter1: used to filter the wavelengths close to wavelengths of the emission (scatter radiation), excitation filter
- 3 Cuvets : it is better to use quartz cells as the glass cells will pass appreciable amount of the excitation radiation (365 nm), some instruments use glass cells + filter
- 4 Filter 2 : emission filter to give the monochromatic radiation that detected by the detector
- 5 Detector
- 6 Read-out Device (Recorder)

- The measurement is made at a right angel to the direction of the incident radiation, to separate them from the emission radiation.
- The fluorescence radiation emitted in all directions but the incident radiation passes through the solution straight.
- Therefore filter 2 is used to separate the emission radiation from the excitation radiation (to isolate the fluorescent emission spectrum).

instrumentation



optical paths for the source and the detector are perpendicular to each other (90) Excitation wavelenth selector

Instrumentation

Introduction to Fluorescence Spectroscopy

Figure 5 Essential components of a fluorescence spectrometer

Applications

- Fluorometry is generally used if there is no colorimetric method sufficiently sensitive or selective for the substance to be determined.
- <u>1 analysis of metals</u>: eg.Al³⁺ forms fluorescent complex with eriochrome blue black.
- 2 analysis of nonmetals: eg.condensation reaction between boric acid and benzoin forms fluorescent complex.
- <u>3 organic applications</u>: determination of quinine , riboflavin , thiamine, amino acids .