TUTORIAL

Example:

Write the equation of a line that passes through the point $\mathrm{p}(3,1)$ and is (parallel, perpendicular) to the line $\mathrm{L}: \mathrm{y}=2 \mathrm{x}+3$, and the distance from P to L .

Solution

1- Parallel lines have the same slope.
The slope of the line with equation

$$
\begin{gathered}
y: 2 x+3 \text { is } \\
m=2 \\
L / / L \\
m=m^{\prime}=2
\end{gathered}
$$

Now use the point-slope form to find the equation.

$$
y-y^{\prime}=m^{\prime}\left(x-x^{\prime}\right)
$$

We have to find the equation of the line which has Slope 2 and passes through the point $(3,1)$.

$$
\begin{gathered}
y-1=2(x-3) \\
y-2 x=-5
\end{gathered}
$$

2- Perpendicular lines

$$
\begin{gathered}
m \cdot m^{\prime}=-1 \\
m^{\prime}=\frac{-1}{2} \\
y-y^{\prime}=m^{\prime}\left(x-x^{\prime}\right)
\end{gathered}
$$

$$
\begin{gathered}
y-1=\frac{-1}{2}(x-3) \\
y=\frac{-1}{2} x+\frac{3}{2}+1 \\
y=\frac{-1}{2} x+\frac{5}{2}
\end{gathered}
$$

3- distance from p to L

1) Find equation of perpendicular line

$$
y=\frac{-1}{2} x+\frac{5}{2}
$$

2) Find the point $Q(x 2, y 2)$

$$
\begin{aligned}
& y=2 x+3 \ldots \ldots \ldots \ldots(1) \\
& y=\frac{-1}{2} x+\frac{5}{2} \ldots \ldots \ldots \ldots(2)
\end{aligned}
$$

Eq.(1) in (2)

$$
2 x+3=\frac{-1}{2} x+\frac{5}{2}
$$

$2 x+\frac{1}{2} x=\frac{5}{2}-3$
$\frac{5}{2} x=\frac{-1}{2}$

$X=-\frac{1}{5}$

$$
y=2 * \frac{-1}{5}+3=\frac{13}{5}
$$

Q (-1/5, 13/5)

$$
\begin{gathered}
d=\sqrt{\left(x_{Q}-x_{p}\right)^{2}+\left(y_{Q}-y_{p}\right)^{2}} \\
d=\sqrt{\left(\frac{-1}{5}-3\right)^{2}+\left(\frac{13}{5}-1\right)^{2}} \\
d=\sqrt{\left(\frac{-16}{5}\right)^{2}+\left(\frac{8}{5}\right)^{2}}=3.57
\end{gathered}
$$

