
These equations agree with Eqs. (2-44a) and (2-44b) of Section 2.7. 
Also, for pure shear we substitute

sx � sy � 0 ex � ey � 0

into Eqs. (7-50) and (7-51) and obtain 

u � u � (g,h)

These equations agree with Eqs. (3-55a) and (3-55b) of Section 3.9. 

7.6 TRIAXIAL STRESS

An element of material subjected to normal stresses sx, sy, and sz acting
in three mutually perpendicular directions is said to be in a state of
triaxial stress (Fig. 7-27a). Since there are no shear stresses on the x, y,
and z faces, the stresses sx, sy, and sz are the principal stresses in the
material.

If an inclined plane parallel to the z axis is cut through the element
(Fig. 7-27b), the only stresses on the inclined face are the normal stress s
and shear stress t, both of which act parallel to the xy plane. These
stresses are analogous to the stresses sx1

and tx1y1
encountered in our

earlier discussions of plane stress (see, for instance, Fig. 7-2a). Because
the stresses s and t (Fig. 7-27b) are found from equations of force equi-
librium in the xy plane, they are independent of the normal stress sz.
Therefore, we can use the transformation equations of plane stress, as
well as Mohr’s circle for plane stress, when determining the stresses s
and t in triaxial stress. The same general conclusion holds for the normal
and shear stresses acting on inclined planes cut through the element
parallel to the x and y axes.

Maximum Shear Stresses

From our previous discussions of plane stress, we know that the maxi-
mum shear stresses occur on planes oriented at 45° to the principal planes.
Therefore, for a material in triaxial stress (Fig. 7-27a), the maximum
shear stresses occur on elements oriented at angles of 45° to the x, y, and
z axes. For example, consider an element obtained by a 45° rotation about
the z axis. The maximum positive and negative shear stresses acting on
this element are 

(tmax)z � / �
sx �

2

sy
� (7-52a)

Similarly, by rotating about the x and y axes through angles of 45°, we
obtain the following maximum shear stresses:

Gg 2
xy

�
2

t 2
xy

�
2G
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(tmax)x � / �
sy �

2

sz
� (tmax)y � / �

sx �

2

sz
� (7-52b,c)

The absolute maximum shear stress is the numerically largest of the
stresses determined from Eqs. (7-52a, b, and c). It is equal to one-half
the difference between the algebraically largest and algebraically small-
est of the three principal stresses. 

The stresses acting on elements oriented at various angles to the x, y,
and z axes can be visualized with the aid of Mohr’s circles. For elements
oriented by rotations about the z axis, the corresponding circle is labeled
A in Fig. 7-28. Note that this circle is drawn for the case in which
sx 0 sy and both sx and sy are tensile stresses. 

In a similar manner, we can construct circles B and C for elements
oriented by rotations about the x and y axes, respectively. The radii of
the circles represent the maximum shear stresses given by Eqs. (7-52a,
b, and c), and the absolute maximum shear stress is equal to the radius
of the largest circle. The normal stresses acting on the planes of maxi-
mum shear stresses have magnitudes given by the abscissas of the
centers of the respective circles. 

In the preceding discussion of triaxial stress we only considered
stresses acting on planes obtained by rotating about the x, y, and z axes.
Thus, every plane we considered is parallel to one of the axes. For
instance, the inclined plane of Fig. 7-27b is parallel to the z axis, and its
normal is parallel to the xy plane. Of course, we can also cut through 
the element in skew directions, so that the resulting inclined planes 
are skew to all three coordinate axes. The normal and shear stresses
acting on such planes can be obtained by a more complicated three-
dimensional analysis. However, the normal stresses acting on skew
planes are intermediate in value between the algebraically maximum
and minimum principal stresses, and the shear stresses on those planes
are smaller (in absolute value) than the absolute maximum shear stress
obtained from Eqs. (7-52a, b, and c). 

Hooke’s Law for Triaxial Stress

If the material follows Hooke’s law, we can obtain the relationships
between the normal stresses and normal strains by using the same procedure
as for plane stress (see Section 7.5). The strains produced by the stresses
sx, sy, and sz acting independently are superimposed to obtain the
resultant strains. Thus, we readily arrive at the following equations for
the strains in triaxial stress:

ex � �
s

E
x
� � �

E
n

� (sy � sz ) (7-53a)

e y � �
s

E
y
� � �

E
n

�(sz � sx ) (7-53b)

ez � �
s

E
z

� � �
E
n

�(sx � sy ) (7-53c)
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FIG. 7-28 Mohr’s circles for an element
in triaxial stress



In these equations, the standard sign conventions are used; that is, tensile
stress s and extensional strain e are positive. 

The preceding equations can be solved simultaneously for the
stresses in terms of the strains:

sx ��
(1 � n)

E
(1 � 2n)
� �(1 � n)ex � n (ey � ez )� (7-54a)

sy ��
(1 � n)

E
(1 � 2n)
� �(1 � n)ey � n (ez � ex )� (7-54b)

sz ��
(1 � n)

E
(1 � 2n)
� �(1 � n)ez � n (ex � ey )� (7-54c)

Equations (7-53) and (7-54) represent Hooke’s law for triaxial stress.
In the special case of biaxial stress (Fig. 7-11b), we can obtain the

equations of Hooke’s law by substituting sz � 0 into the preceding
equations. The resulting equations reduce to Eqs. (7-39) and (7-40) of
Section 7.5. 

Unit Volume Change

The unit volume change (or dilatation) for an element in triaxial stress is
obtained in the same manner as for plane stress (see Section 7.5). If the
element is subjected to strains ex, ey, and ez, we may use Eq. (7-46) for
the unit volume change: 

e � ex � ey � ez (7-55)

This equation is valid for any material provided the strains are small. 
If Hooke’s law holds for the material, we can substitute for the

strains ex, ey, and ez from Eqs. (7-53a, b, and c) and obtain 

e � �
1 �

E
2n

� (sx � sy � sz) (7-56)

Equations (7-55) and (7-56) give the unit volume change in triaxial
stress in terms of the strains and stresses, respectively. 

Strain-Energy Density

The strain-energy density for an element in triaxial stress is obtained by
the same method used for plane stress. When stresses sx and sy act
alone (biaxial stress), the strain-energy density (from Eq. 7-49 with the
shear term discarded) is 

u � �
1
2

� (sxex � syey)

When the element is in triaxial stress and subjected to stresses sx, sy,
and sz, the expression for strain-energy density becomes 
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u � �
1
2

� (sxex � syey � szez) (7-57a)

Substituting for the strains from Eqs. (7-53a, b, and c), we obtain the
strain-energy density in terms of the stresses:

u � �
2
1
E
� (s 2

x � s 2
y � s 2

z ) � �
E
n

� (sxsy � sxsz � sysz ) (7-57b)

In a similar manner, but using Eqs. (7-54a, b, and c), we can express the
strain-energy density in terms of the strains:

u ��
2(1 � n)

E
(1 � 2n)
� [(1 � n)(e2

x � e 2
y � e2

z )

� 2n(exey � exez � eyez)] (7-57c)

When calculating from these expressions, we must be sure to substitute
the stresses and strains with their proper algebraic signs. 

Spherical Stress

A special type of triaxial stress, called spherical stress, occurs whenever
all three normal stresses are equal (Fig. 7-29): 

sx � sy � sz � s0 (7-58)

Under these stress conditions, any plane cut through the element will
be subjected to the same normal stress s0 and will be free of shear
stress. Thus, we have equal normal stresses in every direction and no
shear stresses anywhere in the material. Every plane is a principal
plane, and the three Mohr’s circles shown in Fig. 7-28 reduce to a
single point.

The normal strains in spherical stress are also the same in all direc-
tions, provided the material is homogeneous and isotropic. If Hooke’s
law applies, the normal strains are 

e0 � �
s

E
0

� (1 � 2n) (7-59)

as obtained from Eqs. (7-53a, b, and c). 
Since there are no shear strains, an element in the shape of a cube

changes in size but remains a cube. In general, any body subjected to
spherical stress will maintain its relative proportions but will expand or
contract in volume depending upon whether s0 is tensile or compressive. 

The expression for the unit volume change can be obtained from
Eq. (7-55) by substituting for the strains from Eq. (7-59). The result is

e � 3e0 � �
3s0(1

E

� 2n)
� (7-60)
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FIG. 7-29 Element in spherical stress



Equation (7-60) is usually expressed in more compact form by introduc-
ing a new quantity K called the volume modulus of elasticity, or bulk
modulus of elasticity, which is defined as follows:

K � �
3(1 �

E
2n)

� (7-61)

With this notation, the expression for the unit volume change becomes

e � �
s

K
0
� (7-62)

and the volume modulus is 

K � �
s

e
0
� (7-63)

Thus, the volume modulus can be defined as the ratio of the spherical
stress to the volumetric strain, which is analogous to the definition of the
modulus E in uniaxial stress. Note that the preceding formulas for e and K
are based upon the assumptions that the strains are small and Hooke’s law
holds for the material.

From Eq. (7-61) for K, we see that if Poisson’s ratio n equals 1/3, the
moduli K and E are numerically equal. If n � 0, then K has the value E/3,
and if n � 0.5, K becomes infinite, which corresponds to a rigid material
having no change in volume (that is, the material is incompressible).

The preceding formulas for spherical stress were derived for an
element subjected to uniform tension in all directions, but of course
the formulas also apply to an element in uniform compression. In the
case of uniform compression, the stresses and strains have negative
signs. Uniform compression occurs when the material is subjected to
uniform pressure in all directions; for example, an object submerged in
water or rock deep within the earth. This state of stress is often called
hydrostatic stress.

Although uniform compression is relatively common, a state of
uniform tension is difficult to achieve. It can be realized by suddenly and
uniformly heating the outer surface of a solid metal sphere, so that the
outer layers are at a higher temperature than the interior. The tendency of
the outer layers to expand produces uniform tension in all directions at
the center of the sphere.

7.7 PLANE STRAIN

The strains at a point in a loaded structure vary according to the orien-
tation of the axes, in a manner similar to that for stresses. In this section
we will derive the transformation equations that relate the strains in
inclined directions to the strains in the reference directions. These
transformation equations are widely used in laboratory and field investi-
gations involving measurements of strains. 
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Strains are customarily measured by strain gages; for example,
gages are placed in aircraft to measure structural behavior during flight,
and gages are placed in buildings to measure the effects of earthquakes.
Since each gage measures the strain in one particular direction, it is
usually necessary to calculate the strains in other directions by means of
the transformation equations. 

Plane Strain Versus Plane Stress

Let us begin by explaining what is meant by plane strain and how it
relates to plane stress. Consider a small element of material having sides
of lengths a, b, and c in the x, y, and z directions, respectively (Fig. 7-30a).
If the only deformations are those in the xy plane, then three strain compo-
nents may exist—the normal strain ex in the x direction (Fig. 7-30b), the
normal strain ey in the y direction (Fig. 7-30c), and the shear strain gxy

(Fig. 7-30d). An element of material subjected to these strains (and only
these strains) is said to be in a state of plane strain.

It follows that an element in plane strain has no normal strain ez in
the z direction and no shear strains gxz and gyz in the xz and yz planes,
respectively. Thus, plane strain is defined by the following conditions: 

ez � 0 gx z � 0 gy z � 0 (7-64a,b,c)

The remaining strains (ex, ey, and gxy) may have nonzero values.
From the preceding definition, we see that plane strain occurs when

the front and rear faces of an element of material (Fig. 7-30a) are fully
restrained against displacement in the z direction—an idealized condi-
tion that is seldom reached in actual structures. However, this does not
mean that the transformation equations of plane strain are not useful. It
turns out that they are extremely useful because they also apply to the
strains in plane stress, as explained in the following paragraphs. 

The definition of plane strain (Eqs. 7-64a, b, and c) is analogous to
that for plane stress. In plane stress, the following stresses must be zero: 

sz � 0 txz � 0 tyz � 0 (7-65a,b,c)
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FIG. 7-30 Strain components ex, ey, and
gxy in the xy plane (plane strain)
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whereas the remaining stresses (sx, sy, and txy) may have nonzero val-
ues. A comparison of the stresses and strains in plane stress and plane
strain is given in Fig. 7-31. 

It should not be inferred from the similarities in the definitions of
plane stress and plane strain that both occur simultaneously. In general, an
element in plane stress will undergo a strain in the z direction (Fig. 7-31);
hence, it is not in plane strain. Also, an element in plane strain usually
will have stresses sz acting on it because of the requirement that ez � 0;
therefore, it is not in plane stress. Thus, under ordinary conditions plane
stress and plane strain do not occur simultaneously. 

An exception occurs when an element in plane stress is subjected to
equal and opposite normal stresses (that is, when sx � �sy) and
Hooke’s law holds for the material. In this special case, there is no
normal strain in the z direction, as shown by Eq. (7-34c), and therefore
the element is in a state of plane strain as well as plane stress. Another
special case, albeit a hypothetical one, is when a material has Poisson’s
ratio equal to zero (n � 0); then every plane stress element is also in
plane strain because ez � 0 (Eq. 7-34c).*
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*In the discussions of this chapter we are omitting the effects of temperature changes 
and prestrains, both of which produce additional deformations that may alter some of our
conclusions.
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Application of the Transformation Equations

The stress-transformation equations derived for plane stress in the xy
plane (Eqs. 7-4a and 7-4b) are valid even when a normal stress sz is
present. The explanation lies in the fact that the stress sz does not enter
the equations of equilibrium used in deriving Eqs. (7-4a) and (7-4b).
Therefore, the transformation equations for plane stress can also be
used for the stresses in plane strain.

An analogous situation exists for plane strain. Although we will
derive the strain-transformation equations for the case of plane strain in
the xy plane, the equations are valid even when a strain ez exists. The
reason is simple enough—the strain ez does not affect the geometric
relationships used in the derivations. Therefore, the transformation
equations for plane strain can also be used for the strains in plane
stress.

Finally, we should recall that the transformation equations for plane
stress were derived solely from equilibrium and therefore are valid for
any material, whether linearly elastic or not. The same conclusion
applies to the transformation equations for plane strain—since they are
derived solely from geometry, they are independent of the material
properties.

Transformation Equations for Plane Strain 

In the derivation of the transformation equations for plane strain, we
will use the coordinate axes shown in Fig. 7-32. We will assume that the
normal strains ex and ey and the shear strain gxy associated with the xy
axes are known (Fig. 7-30). The objectives of our analysis are to deter-
mine the normal strain ex1

and the shear strain gx1 y1
associated with the

x1y1 axes, which are rotated counterclockwise through an angle u from
the xy axes. (It is not necessary to derive a separate equation for the
normal strain ey1

because it can be obtained from the equation for ex1
by

substituting u � 90° for u.)
Normal strain ex1

. To determine the normal strain ex1
in the x1

direction, we consider a small element of material selected so that the x1

axis is along a diagonal of the z face of the element and the x and y axes
are along the sides of the element (Fig. 7-33a). The figure shows a two-
dimensional view of the element, with the z axis toward the viewer. Of
course, the element is actually three dimensional, as in Fig. 7-30a, with
a dimension in the z direction.

Consider first the strain ex in the x direction (Fig. 7-33a). This strain
produces an elongation in the x direction equal to exdx, where dx is the
length of the corresponding side of the element. As a result of this elon-
gation, the diagonal of the element increases in length by an amount 

ex dx cos u (a)

as shown in Fig. 7-33a. 

O
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x

y1

x1

u

u

FIG. 7-32 Axes x1 and y1 rotated through
an angle u from the xy axes



Next, consider the strain ey in the y direction (Fig. 7-33b). This
strain produces an elongation in the y direction equal to eydy, where dy
is the length of the side of the element parallel to the y axis. As a result
of this elongation, the diagonal of the element increases in length by an
amount

ey dy sin u (b)

which is shown in Fig. 7-33b. 
Finally, consider the shear strain gxy in the xy plane (Fig. 7-33c).

This strain produces a distortion of the element such that the angle at the
lower left corner of the element decreases by an amount equal to the
shear strain. Consequently, the upper face of the element moves to
the right (with respect to the lower face) by an amount gxydy. This
deformation results in an increase in the length of the diagonal equal to 

gxy dy cos u (c)

as shown in Fig. 7-33c. 
The total increase 
d in the length of the diagonal is the sum of the

preceding three expressions; thus, 


d � ex dx cos u � ey dy sin u � gxy dy cos u (d)
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The normal strain ex1
in the xl direction is equal to this increase in length

divided by the initial length ds of the diagonal: 

ex1 � �



ds
d
� � ex �

d
d
x
s
� cos u � ey �

d

d

y

s
� sin u � gxy �

d

d

y

s
� cos u (e)

Observing that dx/ds � cos u and dy/ds � sin u, we obtain the follow-
ing equation for the normal strain:

(7-66)

Thus, we have obtained an expression for the normal strain in the x1

direction in terms of the strains ex, ey, and gxy associated with the xy
axes.

As mentioned previously, the normal strain e y1
in the y l direction is

obtained from the preceding equation by substituting u � 90° for u.
Shear strain gx1y1

. Now we turn to the shear strain gx1y1
associated

with the x1y1 axes. This strain is equal to the decrease in angle between
lines in the material that were initially along the x1 and yl axes. To clarify
this idea, consider Fig. 7-34, which shows both the xy and x1y1 axes,
with the angle u between them. Let line Oa represent a line in the
material that initially was along the xl axis (that is, along the diagonal of
the element in Fig. 7-33). The deformations caused by the strains ex, ey,
and gxy (Fig. 7-33) cause line Oa to rotate through a counterclockwise
angle a from the xl axis to the position shown in Fig. 7-34. Similarly,
line Ob was originally along the yl axis, but because of the deformations
it rotates through a clockwise angle b. The shear strain gx1y1

is the
decrease in angle between the two lines that originally were at right
angles; therefore, 

gx1y1
� a � b (7-67)

Thus, in order to find the shear strain gx1y1
, we must determine the

angles a and b.
The angle a can be found from the deformations pictured in 

Fig. 7-33 as follows. The strain ex (Fig. 7-33a) produces a clockwise rota-
tion of the diagonal of the element. Let us denote this angle of rotation as
a1. The angle a1 is equal to the distance ex dx sin u divided by the length
ds of the diagonal: 

a1 � ex �
d
d
x
s
� sin u (f)

Similarly, the strain ey produces a counterclockwise rotation of the diag-
onal through an angle a2 (Fig. 7-33b). This angle is equal to the distance
ey dy cos u divided by ds:

ex1
� ex cos2 u � ey sin2 u � gxy sin u cos u
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a2 � ey �
d

d

y

s
� cosu (g)

Finally, the strain gx y produces a clockwise rotation through an angle a3

(Fig. 7-33c) equal to the distance gx y dy sin u divided by ds:

a3 � gxy �
d

d

y

s
� sinu (h)

Therefore, the resultant counterclockwise rotation of the diagonal
(Fig. 7-33), equal to the angle a shown in Fig. 7-34, is 

a � �a1� a2 � a3

� �ex �
d
ds

x
� sin u � e y �

d

d

y

s
� cos u � gx y �

d

d

y

s
� sin u (i)

Again observing that dx/ds � cos u and dy/ds � sin u, we obtain 

a � �(ex � ey ) sin u cos u � gx y sin2 u (7-68)

The rotation of line Ob (Fig. 7-34), which initially was at 90° to line
Oa, can be found by substituting u � 90° for u in the expression for a.
The resulting expression is counterclockwise when positive (because a
is counterclockwise when positive), hence it is equal to the negative of
the angle b (because b is positive when clockwise). Thus, 

b � (ex � ey) sin (u � 90°) cos (u � 90°) � gx y sin2 (u � 90°)

� �(ex � ey) sin u cos u � gx y cos2 u (7-69)

Adding a and b gives the shear strain gx1y1
(see Eq. 7-67): 

gx1y1
� �2(ex � ey) sin u cos u � gxy (cos2 u � sin2 u ) ( j)

To put the equation in a more useful form, we divide each term by 2: 

(7-70)

We have now obtained an expression for the shear strain gx1y1
associ-

ated with the x1y1 axes in terms of the strains ex, ey, and gxy associated
with the xy axes.

Transformation equations for plane strain. The equations for
plane strain (Eqs. 7-66 and 7-70) can be expressed in terms of the angle
2u by using the following trigonometric identities: 

cos2 u � �
1
2

� (1 � cos 2u) sin2 u � �
1
2

� (1 � cos 2u)

�
gx

2
l yl
� � �(ex � ey) sin u cos u � �

g

2
xy
� (cos2 u � sin2 u )
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sin u cos u � �
1
2

� sin 2u

Thus, the transformation equations for plane strain become 

(7-71a)

and

(7-71b)

These equations are the counterparts of Eqs. (7-4a) and (7-4b) for plane
stress.

When comparing the two sets of equations, note that exl
corresponds

to sxl
, gxl yl

/2 corresponds to txl yl
, ex corresponds to sx, ey corresponds to

sy, and gx y /2 corresponds to txy. The corresponding variables in the two
sets of transformation equations are listed in Table 7-1. 

The analogy between the transformation equations for plane stress
and those for plane strain shows that all of the observations made in
Sections 7.2, 7.3, and 7.4 concerning plane stress, principal stresses,
maximum shear stresses, and Mohr’s circle have their counterparts in
plane strain. For instance, the sum of the normal strains in perpendicular
directions is a constant (compare with Eq. 7-6): 

(7-72)

This equality can be verified easily by substituting the expressions for ex1
(from Eq. 7-71a) and ey1

(from Eq. 7-71a with u replaced by u � 90°).

Principal Strains 

Principal strains exist on perpendicular planes with the principal angles
up calculated from the following equation (compare with Eq. 7-11): 

(7-73)

The principal strains can be calculated from the equation

(7-74)e1,2 � �
ex �

2

ey
� / ���ex �

2

e�y
��

2

� ���g

2
xy
��

2�

tan 2up � �
ex

g

�

xy

ey
�

ex1
� ey1

� ex � ey

�
g

x

2
l yl
� � ��

ex �

2

ey
� sin 2u � �

g

2
xy
� cos 2u

ex1
� �

ex �

2

ey
� � �

ex �

2

ey
� cos 2u � �

g

2
xy
� sin 2u

TABLE 7-1 CORRESPONDING VARIABLES IN
THE TRANSFORMATION EQUATIONS FOR
PLANE STRESS (EQS. 7-4a AND b) AND
PLANE STRAIN (EQS. 7-71a AND b)

Stresses Strains

sx ex

sy ey

txy gxy /2

sx1
ex1

tx1 y1
gx1 y1

/2
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which corresponds to Eq. (7-17) for the principal stresses. The two prin-
cipal strains (in the xy plane) can be correlated with the two principal
directions using the technique described in Section 7.3 for the principal
stresses. (This technique is illustrated later in Example 7-7.) Finally,
note that in plane strain the third principal strain is ez � 0. Also, the
shear strains are zero on the principal planes. 

Maximum Shear Strains

The maximum shear strains in the xy plane are associated with axes at
45° to the directions of the principal strains. The algebraically maximum
shear strain (in the xy plane) is given by the following equation (com-
pare with Eq. 7-25): 

(7-75)

The minimum shear strain has the same magnitude but is negative. In
the directions of maximum shear strain, the normal strains are 

(7-76)

which is analogous to Eq. (7-27) for stresses. The maximum out-of-plane
shear strains, that is, the shear strains in the xz and yz planes, can be
obtained from equations analogous to Eq. (7-75). 

An element in plane stress that is oriented to the principal directions
of stress (see Fig. 7-13b) has no shear stresses acting on its faces. There-
fore, the shear strain gxl yl

for this element is zero. It follows that the
normal strains in this element are the principal strains. Thus, at a given
point in a stressed body, the principal strains and principal stresses
occur in the same directions.

Mohr’s Circle for Plane Strain 

Mohr’s circle for plane strain is constructed in the same manner as the
circle for plane stress, as illustrated in Fig. 7-35. Normal strain ex1

is plot-
ted as the abscissa (positive to the right) and one-half the shear strain
(gxlyl

/2) is plotted as the ordinate (positive downward). The center C of
the circle has an abscissa equal to eaver (Eq. 7-76). 

Point A, representing the strains associated with the x direction
(u � 0), has coordinates ex and gxy /2. Point B, at the opposite end
of a diameter from A, has coordinates ey and �gx y /2,
representing the strains associated with a pair of axes rotated through
an angle u � 90°.

eaver � �
ex �

2

ey
�

�
gm

2
ax
� � ���ex �

2

e�y
��

2

� ���g

2
xy
��

2�
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The strains associated with axes rotated through an angle u are
given by point D, which is located on the circle by measuring an
angle 2u counterclockwise from radius CA. The principal strains are
represented by points Pl and P2, and the maximum shear strains by
points S1 and S2. All of these strains can be determined from the geome-
try of the circle or from the transformation equations. 

Strain Measurements

An electrical-resistance strain gage is a device for measuring nor-
mal strains on the surface of a stressed object. These gages are quite
small, with lengths typically in the range from one-eighth to one-
half of an inch. The gages are bonded securely to the surface of the
object so that they change in length in proportion to the strains in
the object itself. 

Each gage consists of a fine metal grid that is stretched or shortened
when the object is strained at the point where the gage is attached. The
grid is equivalent to a continuous wire that goes back and forth from one
end of the grid to the other, thereby effectively increasing its length 
(Fig. 7-36). The electrical resistance of the wire is altered when it
stretches or shortens—then this change in resistance is converted into a
measurement of strain. The gages are extremely sensitive and can
measure strains as small as 1 � 10�6.

D'

O C

e1

e2

S2

S1

P1

P2

ex

B(u = 90°)

D(u = u)

A(u = 0)

gx1y1

gx1y1

ex1

ex1

2u

2up1

ex – ey

2
eaver =

ex + ey

2

ey

2

2

2

gxy

gxy

2
–

FIG. 7-35 Mohr’s circle for plane strain



Since each gage measures the normal strain in only one direction,
and since the directions of the principal stresses are usually unknown,
it is necessary to use three gages in combination, with each
gage measuring the strain in a different direction. From three such
measurements, it is possible to calculate the strains in any direction,
as illustrated in Example 7-8. 

A group of three gages arranged in a particular pattern is called a
strain rosette. Because the rosette is mounted on the surface of the
body, where the material is in plane stress, we can use the transforma-
tion equations for plane strain to calculate the strains in various
directions. (As explained earlier in this section, the transformation
equations for plane strain can also be used for the strains in
plane stress.) 

Calculation of Stresses from the Strains

The strain equations presented in this section are derived solely from
geometry, as already pointed out. Therefore, the equations apply to any
material, whether linear or nonlinear, elastic or inelastic. However, if it
is desired to determine the stresses from the strains, the material proper-
ties must be taken into account.

If the material follows Hooke’s law, we can find the stresses using
the appropriate stress-strain equations from either Section 7.5 (for plane
stress) or Section 7.6 (for triaxial stress). 

As a first example, suppose that the material is in plane
stress and that we know the strains ex, ey, and gxy, perhaps from strain-
gage measurements. Then we can use the stress-strain equations for
plane stress (Eqs. 7-36 and 7-37) to obtain the stresses in the material. 

Now consider a second example. Suppose we have determined the
three principal strains e1, e2, and e3 for an element of material (if the
element is in plane strain, then e3 � 0). Knowing these strains, we can
find the principal stresses using Hooke’s law for triaxial stress (see
Eqs. 7-54a, b, and c). Once the principal stresses are known, we can find
the stresses on inclined planes using the transformation equations for
plane stress (see the discussion at the beginning of Section 7.6). 
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(a) 45° strain gages three-element rosette
(b) Three-element strain-gage rosettes
      prewired

FIG. 7-36 Three electrical-resistance
strain gages arranged as a 45° strain
rosette (magnified view).
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An element of material in plane strain undergoes the following strains: 

ex � 340 � 10�6 ey � 110 � 10�6 gxy � 180 � 10�6

These strains are shown highly exaggerated in Fig. 7-37a, which shows the
deformations of an element of unit dimensions. Since the edges of the element
have unit lengths, the changes in linear dimensions have the same magnitudes as
the normal strains ex and ey. The shear strain gxy is the decrease in angle at the
lower-left corner of the element. 

Determine the following quantities: (a) the strains for an element oriented at
an angle u � 30°, (b) the principal strains, and (c) the maximum shear strains.
(Consider only the in-plane strains, and show all results on sketches of properly
oriented elements.) 

Example 7-7

continued

y

1

110 × 10–6

180 × 10–6

340 × 10–6

1

(a)

x

up1
 = 19.0°

O

y
y1

x1

80 × 10–6

370 × 10–6

(c)

xO

u = 30°

y
y1

x190 × 10–6

110 × 10–6 360 × 10–6

(b)

xO

us2
 = 64.0°

y

y1

x1

225 × 10–6

290 × 10–6

225 × 10–6

(d)

x

O

FIG. 7-37 Example 7-7. Element of
material in plane strain: (a) element
oriented to the x and y axes, (b) element
oriented at an angle u � 30°,
(c) principal strains, and (d) maximum
shear strains. (Note: The edges of the
elements have unit lengths.)



596 CHAPTER 7 Analysis of Stress and Strain

Solution
(a) Element oriented at an angle u 5 30°. The strains for an element oriented

at an angle u to the x axis can be found from the transformation equations (Eqs.
7-71a and 7-71b). As a preliminary matter, we make the following calculations: 

�
ex �

2

ey
� � � 225 � 10�6

�
ex �

2

ey
� � � 115 � 10�6

�
g

2
xy
� � 90 � 10�6

Now substituting into Eqs. (7-71a) and (7-71b), we get 

ex1
� �

ex �

2

ey
� � �

ex �

2

ey
� cos 2u � �

g

2
xy
� sin 2u

� (225 � 10�6) � (115 � 10�6)(cos 60°) � (90 � 10�6)(sin 60°)

� 360 � 10�6

�
gx

2
1y1� � � �

ex �

2

ey
� sin 2u � �

g

2
xy
� cos 2u

� �(115 � 10�6)(sin 60°) � (90 � 10�6)(cos 60°)

� �55 � 10�6

Therefore, the shear strain is 

gx1y1
� �110 � 10�6

The strain ey1
can be obtained from Eq. (7-72), as follows: 

e y1
� ex � ey – ex1

� (340 � 110 � 360)10–6 � 90 � 10–6

The strains ex1
, ey1

, and gx1y1
are shown in Fig. 7-37b for an element oriented at

u � 30°. Note that the angle at the lower-left corner of the element increases
because gx1y1

is negative. 
(b) Principal strains. The principal strains are readily determined from

Eq. (7-74), as follows: 

e1,2 � �
ex �

2

ey
� / ���ex �

2

ey
���2

� ��
g

2
x�y
��2�

� 225 � 10�6 / �(115 �� 10�6)�2 � (9�0 � 10��6)2�

� 225 � 10�6 / 146 � 10�6

Thus, the principal strains are 

e1 � 370 � 10–6 e2 � 80 � 10–6

(340 � 110)10�6

��
2

(340 � 110)10�6

��
2
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in which e1 denotes the algebraically larger principal strain and e2 denotes
the algebraically smaller principal strain. (Recall that we are considering only 
in-plane strains in this example.) 

The angles to the principal directions can be obtained from Eq. (7-73): 

tan 2up � �
ex

g

�
xy

ey
� � �

340
1
�

80
110

� � 0.7826

The values of 2up between 0 and 360° are 38.0° and 218.0°, and therefore the
angles to the principal directions are

up � 19.0° and 109.0°

To determine the value of up associated with each principal strain, we sub-
stitute up � 19.0° into the first transformation equation (Eq. 7-71a) and solve for
the strain: 

ex1
� �

ex �

2

ey
� � �

ex �

2

ey
� cos 2u � �

g

2
xy
� sin 2u

� (225 � 10�6) � (115 � 10�6)(cos 38.0°) � (90 � 10�6)(sin 38.0°)

� 370 � 10�6

This result shows that the larger principal strain e l is at the angle up1
� 19.0°.

The smaller strain e2 acts at 90° from that direction (up2
� 109.0°). Thus, 

e1 � 370 � 10–6 and up1
� 19.0°

e2 � 80 � 10–6 and up2
� 109.0°

Note that e1 � e2 � ex � ey.
The principal strains are portrayed in Fig. 7-37c. There are, of course, no

shear strains on the principal planes. 

continued
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y
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x1

225 × 10–6
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225 × 10–6
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FIG. 7-37c and d (Repeated)
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(c) Maximum shear strain. The maximum shear strain is calculated from
Eq. (7-75): 

�
gm

2
ax
� � ���ex �

2�ey
��2

����
g

2
xy
���2� � 146 � 10–6 gmax � 290 � 10–6

The element having the maximum shear strains is oriented at 45° to the principal
directions; therefore, us � 19.0° � 45° � 64.0° and 2us � 128.0°. By substitut-
ing this value of 2us into the second transformation equation (Eq. 7-71b), we can
determine the sign of the shear strain associated with this direction. The calcula-
tions are as follows: 

�
gx

2
1y1� � � �

ex �

2

ey
� sin 2u � �

g

2
xy
� cos 2u

� �(115 � 10�6)(sin 128.0°) � (90 � 10�6)(cos 128.0°)

� �146 � 10�6

This result shows that an element oriented at an angle us2
� 64.0° has the maxi-

mum negative shear strain. 
We can arrive at the same result by observing that the angle us1

to the direc-
tion of maximum positive shear strain is always 45° less than up1

. Hence, 

us1
� up1

� 45° � 19.0° � 45° � �26.0°

us2
� us1

� 90° � 64.0°

The shear strains corresponding to us1
and us2

are gmax � 290 � 10–6 and
gmin � �290 � 10–6, respectively.

The normal strains on the element having the maximum and minimum
shear strains are 

eaver � �
ex �

2

ey
� � 225 � 10�6

A sketch of the element having the maximum in-plane shear strains is shown in
Fig. 7-37d. 

In this example, we solved for the strains by using the transformation equa-
tions. However, all of the results can be obtained just as easily from Mohr’s
circle.



SECTION 7.7 Plane Strain 599

A 45° strain rosette (also called a rectangular rosette) consists of three electrical-
resistance strain gages arranged to measure strains in two perpendicular direc-
tions and also at a 45° angle between them, as shown in Fig. 7-38a. The rosette
is bonded to the surface of the structure before it is loaded. Gages A, B, and C
measure the normal strains ea, eb, and ec in the directions of lines Oa, Ob, and
Oc, respectively. 

Explain how to obtain the strains ex1
, ey1

, and gx1y1
associated with an ele-

ment oriented at an angle u to the xy axes (Fig. 7-38b). 

Solution
At the surface of the stressed object, the material is in plane stress. Since the

strain-transformation equations (Eqs. 7-71a and 7-71b) apply to plane stress as
well as to plane strain, we can use those equations to determine the strains in any
desired direction. 

Strains associated with the xy axes. We begin by determining the strains
associated with the xy axes. Because gages A and C are aligned with the x and y
axes, respectively, they give the strains ex and ey directly:

ex � ea ey � ec (7-77a,b)

To obtain the shear strain gxy, we use the transformation equation for normal
strains (Eq. 7-71a): 

ex1
� �

ex �

2

ey
� � �

ex �

2

ey
� cos 2u � �

g

2
xy
� sin 2u

For an angle u � 45°, we know that ex1
� eb (Fig. 7-38a); therefore, the pre-

ceding equation gives

eb � �
ea �

2

ec
� � �

ea �

2

ec
� (cos 90°) � �

g

2
xy
� (sin 90°)

Solving for gxy, we get 

gxy � 2eb � ea � ec (7-78)

Thus, the strains ex, ey, and gxy are easily determined from the given strain-gage
readings.

Strains associated with the x1y1 axes. Knowing the strains ex, ey, and gxy,
we can calculate the strains for an element oriented at any angle u (Fig. 7-38b)
from the strain-transformation equations (Eqs. 7-71a and 7-71b) or from Mohr’s
circle. We can also calculate the principal strains and the maximum shear strains
from Eqs. (7-74) and (7-75), respectively.

Example 7-8

(a)
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FIG. 7-38 Example 7-8. (a) 45° strain
rosette, and (b) element oriented at an
angle u to the xy axes
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