كلية المستقبل الجامعة قسم الفيزياء الطبية

MATLAB
Lec - 5

م.م علا علي عبيد

Introduction:

Matrices are the basic elements of the MATLAB environment. A matrix is a two-dimensional array consisting of m rows and n columns. Special cases are column vectors ($n=1$) and row vectors ($m=1$). In this section we will illustrate how to apply different operations on matrices. The following topics are discussed: vectors and matrices in MATLAB, the inverse of a matrix, determinants, and matrix manipulation. MATLAB supports two types of operations, known as matrix operations and array operations. Matrix operations will be discussed first.

Matrix generation :
Matrices are fundamental to MATLAB. Therefore, we need to become familiar with matrix generation and manipulation. Matrices can be generated in several ways

Entering a vector:
A vector is a special case of a matrix. The purpose of this section is to show how to create vectors and matrices in MATLAB. As discussed earlier, an array of dimension $1 \times n$ is called a row vector, whereas an array of dimension $m \times 1$ is called a column vector. The elements of vectors in MATLAB are enclosed by square brackets and are separated by spaces or by commas. For example, to enter a row vector, v, type

$v=$

$\begin{array}{lllll}1 & 4 & 7 & 10 & 13\end{array}$

Column vectors are created in a similar way, however, semicolon (;) must separate the components of a column vector,
>> w = [1;4;7;10;13]
$\mathrm{w}=$

13
On the other hand, a row vector is converted to a column vector using the transpose operator. The transpose operation is denoted by an apostrophe or a single quote (').
>> w $=\mathrm{v}^{\prime}$
$\mathrm{w}=$
1
4
7
10
13
Thus, $\mathrm{v}(1)$ is the first element of vector $\mathrm{v}, \mathrm{v}(2)$ its second element, and so forth. Furthermore, to access blocks of elements, we use MATLAB's colon notation (:). For example, to access the first three elements of v, we write,
>> $\mathrm{v}(1: 3)$
ans =
147
Or, all elements from the third through the last elements,

Ans=
$7 \quad 10 \quad 13$
where end signifies the last element in the vector. If v is a vector, writing >> v(:)
produces a column vector, whereas writing
>> v(1:end)
produces a row vector

Entering a matrix

A matrix is an array of numbers. To type a matrix into MATLAB you must

- begin with a square bracket, [
- separate elements in a row with spaces or commas (,)
- use a semicolon (;) to separate rows
- end the matrix with another square bracket,].

Here is a typical example. To enter a matrix A, such as,

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \tag{2.1}\\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

type,

$$
>A=[1123 ; 45 c c c c c c]
$$

MATLAB then displays the 3×3 matrix as follows,
$\mathrm{A}=$

1	2	3
4	5	6
7	8	9

Note that the use of semicolons (;) here is different from their use mentioned earlier to suppress output or to write multiple commands in a single line.

Once we have entered the matrix, it is automatically stored and remembered in the Workspace. We can refer to it simply as matrix A. We can then view a particular element in a matrix by specifying its location. We write,

```
>> A(2,1)
ans =
    4
```

$A(2,1)$ is an element located in the second row and first column. Its value is 4 .

2.5.3 Matrix indexing

We select elements in a matrix just as we did for vectors, but now we need two indices. The element of row i and column j of the matrix A is denoted by $A(i, j)$. Thus, A (i, j) in MATLAB refers to the element $A_{i j}$ of matrix A. The first index is the row number and the second index is the column number. For example, $\mathrm{A}(1,3)$ is an element of first row and third column. Here, $\mathrm{A}(1,3)=3$.

Correcting any entry is easy through indexing. Here we substitute $A(3,3)=9$ by $A(3,3)=0$. The result is

```
>> A(3,3) = 0
```

$\mathrm{A}=$
123
$4 \quad 5 \quad 6$
780

