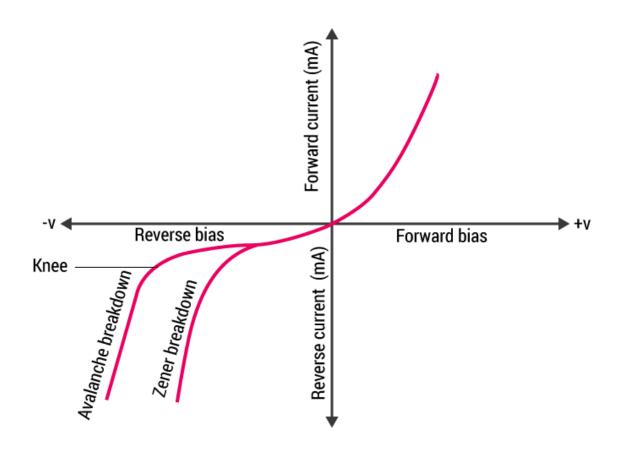


AL-Mustaqbal University College Department of Medical Physics The Second Stage Semiconductors Dr. Rusul Abdul Ameer

كلية المستقبل الجامعة قسم الفيزياء الطبية المرحلة الثانية أشباه موصلات

What is Junction Breakdown?

In the *ideal PN junction* device, when a reverse bias voltage is applied, a small reverse bias current flow through the device. This reverse current remains very small until a critical voltage is reached, at which point the current suddenly increases. This sudden increase in current is referred to as the junction breakdown


General Breakdown Characteristics

- The maximum reverse bias voltage that can be applied to a p-n diode is limited by breakdown
- Breakdown is characterized by the rapid increase of the current under reverse bias
- The corresponding applied voltage is referred to as the breakdown voltage

Types of Junction Breakdown

There are two physical mechanisms which give rise to the reverse bias breakdown.

- Zener Effect (Zener Breakdown)
- Avalanche Effect (Avalanche Breakdown)

Ideal Diode Equation

 Empirical fit for both the negative and positive I-V of a diode when the magnitude of the applied voltage is reasonably small.

$$I_D = I_S \left(e^{\frac{qV_D}{nkT}} - 1 \right)$$

Ideal Diode Equation

Where

 $\rm I_{\rm D}$ and $\rm V_{\rm D}$ are the diode current and voltage, respectively

q is the charge on the electron

n is the ideality factor: n = 1 for indirect semiconductors (Si, Ge, etc.)

n = 2 for direct semiconductors (GaAs, InP, etc.)

k is Boltzmann's constant

T is temperature in Kelvin

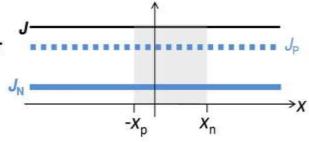
kT/q is also known as V_{th} , the thermal voltage. At 300K (room temperature), kT/q = 25.9 mV

Simplification

When V_D is negative

$$I_D \sim -I_S$$

When V_D is positive


$$I_D \sim I_S e^{\frac{qV_D}{nkT}}$$

General Narrow-Base Diode I-V

- Define $W_{\rm p}$ and $W_{\rm N}$ to be the widths of the quasi-neutral regions.
- If <u>both sides</u> of a pn junction are narrow (i.e. much shorter than the minority carrier diffusion lengths in the respective regions):

$$I = qAn_i^2 \left[\frac{D_P}{W_N' N_D} + \frac{D_N}{W_P' N_A} \right] \left(e^{qV_A/kT} - 1 \right) = I_0 \left(e^{qV_A/kT} - 1 \right)$$

e.g. if hole injection into the n side is greater than electron injection into the p side:

Charge Control Model Summary

Under forward bias, minority-carrier charge is stored in the quasi-neutral regions of a pn diode.

- Long base:
$$Q_N = -qA \frac{n_i^2}{N_A} \left(e^{qV_A/kT} - 1 \right) L_N$$

$$Q_P = qA \frac{n_i^2}{N_D} \left(e^{qV_A/kT} - 1 \right) \mathcal{L}_P$$

- Narrow base:
$$Q_N = -qA \frac{1}{2} \frac{n_i^2}{N_A} (e^{qV_A/kT} - 1) V_P'$$

$$Q_{P} = qA \frac{1}{2} \frac{n_{i}^{2}}{N_{D}} \left(e^{qV_{A}/kT} - 1 \right) V_{N}'$$