
 

Lecture 7  

Time-Dependent Perturbation Theory 

Interaction of Atoms with E. M. 

Radiation 

 17.1 Introduction 

So far we have concentrated on systems for which we could find 

exactly the eigenvalues and eigenfunctions of the Hamiltonian, like e.g. 

the harmonic oscillator, the quantum rotator, or the hydrogen atom. 

However the vast majority of systems in Nature cannot be solved 

exactly, and we need to develop appropriate tools to deal with them. 

Perturbation theory is extremely successful in dealing with those 

cases that can be modelled as a “small deformation” of a system that 

we can solve exactly. 

Let us translate the above statement into a precise mathematical 

framework. We are going to consider systems that have an 

Hamiltonian: 

 Hˆ = Hˆ0 + V ,ˆ (17.1) 

where Hˆ0 is the Hamiltonian of the unperturbed system,  is a small 

parameter, and Vˆ is the potential describing the perturbation. We shall 

assume that the perturbation V is independent of time. 

Let us also assume that we can solve the time-independent 

Schr¨odinger equation for Hˆ0, 

i.e. that we know its eigenvalues and eigenfunctions: 

 Hˆ0ψ(n)(x) = E(n)ψ(n)(x). (17.2) 
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For simplicity we start by considering the case where all the 

unperturbed levels E
(n) 

are not degenerate. 

 17.2 Perturbative solution 

Let us discuss the solution of the time-independent Schr¨odinger 

equation for the full Hamiltonian H. The eigenvalue equation reads: 

 Hˆψ(x) = Eψ(x). (17.3) 

Since  is a small parameter, we shall expand the solution of Eq. 

(17.3) as a Taylor series in : 

 ψ(x) = ψ0(x) + ψ1(x) + 
2
ψ2(x) + ... , (17.4) 

 E = E0 + E1 + 
2
E2 + ... . (17.5) 

Plugging Eqs. (17.4) and (17.5) into Eq. (17.3), we obtain: 

Hˆ0 + Vˆψ0(x)+ψ1(x) + 
2
ψ2(x) + ... = 

 E0 + E1 + 
2
E2 + ...ψ0(x) + ψ1(x) + 

2
ψ2(x) + ....(17.6) 

We can now solve Eq. (17.6) order by order in . 

17.2. PERTURBATIVE SOLUTION 

Order 
0
At order 

0 
we find: 

 H0 − E0ψ0 = 0, (17.7) 

and therefore ψ0 has to be one of the unperturbed eigenfunctions ψ
(n)

, 

and E0 must be the corresponding unperturbed eigenvalue E
(n)

. Since 
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we assumed that the unperturbed levels are nondegenerate the choice of 

ψ
(n) 

is unique. 

Order 
1
At order  we have: 

 Hˆ0 − E0ψ1 + Vˆ − E1ψ0 = 0. (17.8) 

Taking the scalar product of Eq. (17.8) with ψ0 yields: 

 ψ0|Hˆ0|ψ1 + ψ0|Vˆ|ψ0 = E0ψ0|ψ1 + E1ψ0|ψ0. (17.9) 

Since Hˆ0 is Hermitean, the first term on the LHS of Eq. (17.9) cancels 

with the first term on the RHS, and we are left with: 

 . (17.10) 

To first order in the perturbation parameter , the shift of the n-th energy 

eigenvalue is given by Eq. (17.10). Hence the eigenvalue of the 

Hamiltonian is: 

 . (17.11) 

This is a very useful result, since it allows us to compute the perturbed 

energy levels starting from the unperturbed ones. 

Let us now consider the scalar product of Eq. (17.8) with ψ
(m)

, for 

ψ
(m) 

= ψ0: 

 ψ
(m)

|Hˆ0|ψ1 + ψ
(m)

|Vˆ|ψ0 = E0ψ
(m)

|ψ1 + E1ψ
(m)

|ψ0. (17.12) 

Using the fact that:   

we obtain: 
ψ

(m)
|ψ0 = 0, (17.13) 

E = E ( n ) +  
 ψ ( n ) | ̂  V | ψ ( n )  

 ψ ( n ) | ψ ( n )  
+ O (  2 ) 



 150 LECTURE 17. PERTURBATION THEORY 

 . (17.14) 

Hence at first order in  we have: 

 . (17.15) 

Using Dirac’s notation, we can rewrite the solution above as: 

 . (17.16) 

Note that to first order in  the solution in Eq. (17.16) is already 

normalized: 

 )(17.17) 

(17.18) 

 ExampleA particle moves in the 1-dimensional potential 

 V (x) = ∞, |x| > a,V (x) = V0 cos(πx/2a),|x| ≤ a 

Calculate the ground-state energy to first order in perturbation theory. 

Here we take the unperturbed Hamiltonian, Hˆ0, to be that of the 

infinite square well, for which we already know the eigenvalues and 

eigenfunctions: 

 E(n) = π82ma2n22u(n) = √1a  cossin  n2πax;n  evenodd  

, 
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The perturbation Hˆ  is V0 cos(πx/2a), which is small provided V0  

E
(2) 

− E
(1)

. To first order, then, 

 

Evaluating the integral is straightforward and yields the result 

 

 Iterative solutionAt order 
L 

the eigenvalue equation yields: 

L 

 Hˆ0 − E0ψL + Vˆ − E1ψL−1 
− 

 EKψL−K = 0.(17.19) 

K=2 

Taking the same scalar products described above, we find: 

 EL = ψ0|Vˆ|ψL−1, (17.20) 

17.3. DEGENERATE LEVELS 

which yields the correction of order 
L 

to the unperturbed energy 

level. Following the computation above we also obtain: 

 . (17.21) 

Using Eq. (17.21) for L = 2 we find the second-order correction to 

the n-th energy level: 

  . (17.22) 

17.3 Degenerate levels 

Equation (17.15) shows that the correction to the energy eigenfunctions 

at first order in perturbation theory is small only if 
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 . (17.23) 

If the energy splitting between the unperturbed levels is small 

compared to the matrix element in the numerator, then the perturbation 

becomes large, and the approximation breaks down. In particular, if 

there are degenerate levels, the denominator is singular, and the 

solution is not applicable. 

Let us see how we can deal with a g0-fold degenerate level of the 

unperturbed Hamiltonian. We shall denote P the projector onto such 

level, and Q the projector orthogonal to this level. The first-order 

equation: 

Hˆ0 − E0ψ1 + Vˆ − E1ψ0 = 0 

can be projected using P onto the space spun by the degenerate 

states: 

(17.24) 

 PVˆ − E1ψ0 = 0. 0 

Choosing a basis for the space of degenerate levels, we can 

write ψ as: 

(17.25) 

g0 

ψ0 = ciφi , 

i=1 

and then rewrite Eq. (17.25): 

(17.26) 

φi|Vˆ|φjcj = E1ci , (17.27) 

i.e. E1 is an eigenvalue of the matrix Vij = φi|Vˆ|φj. This equation has g0 

roots (not necessarily distinct), and generalizes Eq. (17.10) to the case 

of degenerate levels. If the eigenvalues are indeed all distinct, then the 

degeneracy is completed lifted. If some of the eigenvalues are equal, 

the degeneracy is only partially lifted. 
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Example A well-known example of degenerate perturbation theory is 

the Stark effect, i.e. the separation of levels in the H atom due to the 

presence of an electric field. Let us consider the n = 2 level, which has 

a 4-fold degeneracy: 

 |2s,|2p,0,|2p,+1,|2p,−1. (17.28) 

The electric field is chosen in the z-direction, hence the perturbation 

can be written as: 

 V = −ezE , (17.29) 

where E is the magnitude of the electric field. 

We need to compute the matrix Vij in the subspace of the 

unperturbed states of the H atom with n = 2. This is a 4 × 4 Hermitean 

matrix. 

Note that the perturbation V is odd under parity, and therefore it has 

non-vanishing matrix elements only between states of opposite parity. 

Since the eigenstates of the H atom are eigenstates of L
2 
and Lz, we find 

that only the matrix elements between s and p states can be different 

from zero. 

Moreover, V commutes with Lz and therefore only matrix elements 

between states with the same value of Lz are different from zero. 

So we have proved that the only non-vanishing matrix elements are 

2s|Vˆ|2p,0 and its Hermitean conjugate. Hence the matrix V is given by: 

  , (17.30) 
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where a0 is the Bohr radius. We see that the external field only removes 

the degeneracy between the |2s, and the |2p,0 states; the states |2p,±1 

are left unchanged. The two other levels are split: 

 E = E2 ± 3ea0E . (17.31) 

 17.4 Applications 

There are numerous applications of perturbation theory, which has 

proven to be a very effective tool to gain quantitative information on 

the dynamics of a system whenever a small expansion parameter can 

be identified. 

Here we discuss briefly two examples. 

17.4. APPLICATIONS 

17.4.1 Ground state of Helium 

We can now attempt to incorporate the effect of the inter-electron 

Coulomb repulsion by treating it as a perturbation. We write the 

Hamiltonian as 

Hˆ = Hˆ0 + Hˆ  

where 

 Hˆ0 = Hˆ1 + Hˆ2 and  

The ground state wavefunction that we wrote down earlier is an 

eigenfunction of the unperturbed Hamiltonian, Hˆ0; 

Ψ(ground state) = u100(r1)u100(r2)χ0,0. 
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To compute the first order correction to the ground state energy, we 

have to evaluate the expectation value of the perturbation, Hˆ , with 

respect to this wavefunction; 

 

The scalar product of χ0,0 with its conjugate = 1, since it is normalised. 

Putting in the explicit form of the hydrogenic wavefunction from 

Lecture 10 

 

thus yields the expression 

 

Amazingly, this integral can be evaluated analytically.See, for example, Bransden and 

Joachain, Introduction to Quantum Mechanics, pp 465-466. The result 

is 

 

giving for the first-order estimate of the ground state energy 

E1 = −108.8 + 34 eV = −74.8 eV = −5.5 Ry 

to be compared with the experimentally-measured value of −78.957 eV 

. 

 17.4.2Spin-orbit effects in hydrogenic atoms 

Classically, an electron of mass M and charge −e moving in an orbit 

with angular momentum 

L would have a magnetic moment 

 

suggesting that in the quantum case, 

∆ E 1 = 
e 2 

4 π 0 

 
Z 3 

π a 3 
0 

 2  
1 

r 12 
exp { − 2 Z ( r 1 + r 2 ) /a 0 } d τ 1 d τ 2 
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  and ˆ 

The eigenvalues of ˆµz are thus given by 

, 

where the quantity µB is known as the Bohr magneton. 

Similarly, there is a magnetic moment associated with the intrinsic 

spin of the electron; 

 

where the constant, gs, cannot be determined from classical arguments, 

but is predicted to be 2 by relativistic quantum theory and is found 

experimentally to be very close to 2. 

The interaction between the orbital and spin magnetic moments of 

the electron introduces an extra term into the Hamiltonian of the form 

HˆS−O = f(r)Lˆ · Sˆ 

where 

d

V

 (r) 

 2M c r dr 

We can attempt to treat this extra term by the methods of perturbation 

theory, by taking the unperturbed Hamiltonian to be 

 

Cautionary Note In our derivation of the first-order formula for the 

shift in energy induced by a perturbation, we assumed that there were 

no degeneracies in the energy eigenvalue spectrum and noted that the 

method could break down in the presence of degeneracies. 
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• In general, when considering the effects of a perturbation on a 

degenerate level, it is necessary to use degenerate state 

perturbation theory, which we briefly discussed above. 

17.4. APPLICATIONS 

• There are, however, important exceptions to this rule. In particular, 

if the perturbation Hˆ , is diagonal with respect to the degenerate 

states, the non-degenerate theory can be used to compute the 

energy shifts. 

In the case of the spin-orbit interaction in the hydrogenic atom, we 

know that the degeneracy of a level with given n and  is (2 + 1) × 2, 

since, for a given , there are (2 + 1) possible values of m and 2 possible 

values of ms. 

However, if we choose to work with states of the coupled basis 

|n,j,mj,,s, rather than with the states of the uncoupled basis |n,,m,s,ms, 

we can use non-degenerate theory. Firstly, we note that we can rewrite 

the spin-orbit term as follows: 

 

using the fact that Jˆ
2 
≡ (Lˆ + Sˆ)

2 
= Lˆ

2 
+ Sˆ

2 
+ 2Lˆ · Sˆ. 

Noting that 

ˆ H S − O = f ( r ) ˆ L · ˆ S = 
1 

2 
f ( r ) { ˆ J 2 − ˆ L 2 − ˆ S 2 } 



 158 LECTURE 17. PERTURBATION THEORY 

{Jˆ
2 

− Lˆ
2 

− Sˆ
2
}|n,j,mj,,s = {j(j + 1) − ( + 1) − s(s + 

1)}
2
|n,j,mj,,s we see that the expectation value of Hˆ  in the 

unperturbed basis is 

 

Since f(r) is independent of the angular variables θ,φ and of the spin, 

the expectation value of f(r) may be written 

 

The integral can be evaluated exactly using the hydrogenic radial 

functions and gives: 

 

Now  for an electron, so that j can have two values for a given , 

namely, and ), except in the case  = 0, which means that 

a state of given n and  separates into a doublet when the spin-orbit 

interaction is present. 

Term Notation There is yet another piece of notation used widely in 

the literature, the so-called term notation. The states that arise in 

coupling orbital angular momentum  and spin s to give total angular 

momentum j are denoted: 

(2S+1)LJ 

where L denotes the letter corresponding to the  value in the usual way, 

and the factor (2S + 1) is the spin multiplicity i.e. the number of 

allowed values of ms. 

  

 


