Radiation Physics

Hussein Ali Madlool

Radiology Techniques Department 3rd Class Al-Mustaqbal University college

Practical 2: Inverse square law

Inverse square law

Objective

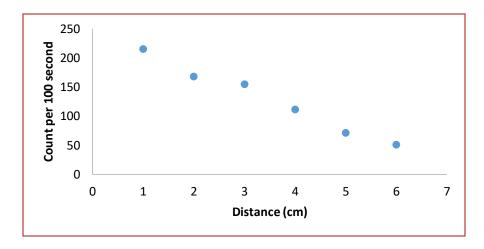
To explore the relationship between the distance from a radioactive source and the intensity of radiation

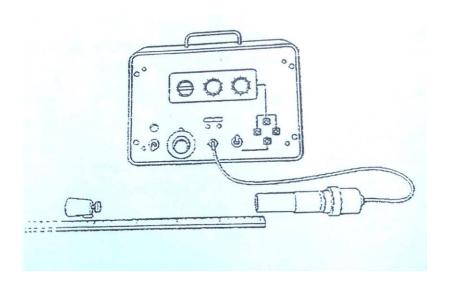
Apparatus

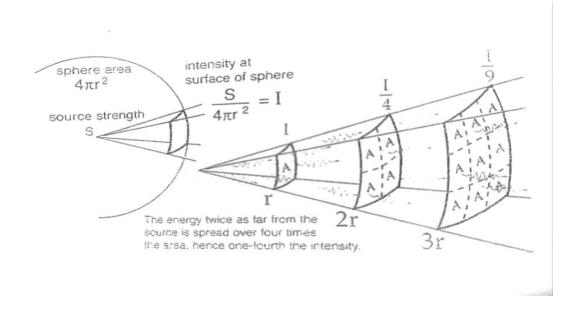
GM(Geiger-Muller) tube detector, operational source check(Co-60), 12 inch ruler

Theory

Radiation intensity (exposure rate) from a point source decreases with distance, due to divergence of the beam. It is governed by the inverse square law, which states that the exposure rate from a point source of radiation is inversely proportional to the square of the distance. If the exposure rate is I_1 at distance d_1 , then the exposure rate I_x at another distance d_2 is given by


$$I_{x} = I_{1} \left(\frac{d_{1}}{d_{2}}\right)^{2}$$


$$N \alpha \frac{1}{d^2}$$


Procedures

- 1. Put the source at different distances from 1 to 6 between the source and the counter
- 2. Record the reference rays (background).
- 3. Two measurements are taken of the distance N1 and N2
- 4. Measurement the average counts $N_{\rm av}$
- 5. calculate the count net $N = N_{av}-N_B$
- 6. Plot the count N vs. distance d

d	d^2	N1	N2	NB	Nav=N1+N2/2	N=Nav-Nb	1/d^2
1	1	250	255	37	252.5	215.5	1
2	4	210	200	37	205	168	0.25
3	9	193	190	37	191.5	154.5	0.11111
4	16	150	147	37	148.5	111.5	0.0625
5	25	110	106	37	108	71	0.04
6	36	90	86	37	88	51	0.02778

Worked Example

The exposure rate from a fluoroscopic X-ray machine is 5 R/min at 50 cm. What would be the exposure rates at (i) 40 cm, and (ii) 60 cm?

$$I_1 = 5 \text{ R/min}, d_1 = 50 \text{ cm}, d_2 = 40 \text{ cm}, I_x = ?$$

$$I_{x} = I_{1} \left(\frac{d_{1}}{d_{2}}\right)^{2}$$

$$= 5 \text{ R/min} \times (50 \text{ cm/}40 \text{ cm})^2$$

$$I_1 = 5 \text{ R/min}, d_1 = 50 \text{ cm}, d_2 = 60 \text{ cm}, I_x = ?$$

$$I_x = 5 \text{ R/min} \times (50 \text{ cm/}60 \text{ cm})^2$$

$$= 3.47 \text{ R/min}$$