Al-Mustaqbal University College ميكانيك المرحلة الاولى فيزياء طبية

المحاضرة الرابعة 2021-2022 Dr. Aiyah Sabah Noori- M. Sc. Noor Haidar

Center of mass

The center of mass of a system of particles is the point that moves as though

- (a) all of the mass were concentrated there;
- (b) all external forces were applied there.

The center of mass of system of N particles is a weighted average of their positions:

$$x_{\text{com}} = \frac{m_1 x_1 + m_2 x_2 + \dots + m_N x_N}{m_1 + m_2 + \dots + m_N}.$$

In fact, we can do this in any dimension:

$$y_{\text{com}} = \frac{m_1 y_1 + m_2 y_2 + \dots + m_N y_N}{m_1 + m_2 + \dots + m_N},$$

$$z_{\text{com}} = \frac{m_1 z_1 + m_2 z_2 + \dots + m_N z_N}{m_1 + m_2 + \dots + m_N}.$$

In three dimensions, the center of mass is:

$$\vec{r}_{com} = x_{com}\hat{i} + y_{com}\hat{j} + z_{com}\hat{k}$$

$$\vec{r}_{com} = \frac{1}{M} \sum_{i}^{N} m_i \vec{r}_i$$

For solid bodies, the summation becomes an integral:

$$x_{\text{com}} = \frac{1}{M} \int x \, dm,$$
$$y_{\text{com}} = \frac{1}{M} \int y \, dm,$$
$$z_{\text{com}} = \frac{1}{M} \int z \, dm.$$

The body is sectioned into point masses dm.

The term **dm** represents a small mass and depends on the problem at hand:

1D: $dm = \lambda dx$,

2D: $dm = \sigma dA$,

3D: $dm = \rho dV$.

- $\triangleright \lambda$ is linear mass density kg/m
- $\triangleright \sigma$ is surface mass density kg/m²
- $\triangleright \rho$ is volume mass density kg/m³

For a system of particles (connected or not), Newton's 2nd Law applies to the center of mass:

$$\vec{F}_{net} = M\vec{a}_{com}$$

- $ightharpoonup \vec{F}_{net}$ is the sum of all external forces on the particles
- ightharpoonup M is the total mass of the particles
- $ightharpoonup \vec{a}_{com}$ is the acceleration of the com

Linear momentum

The momentum of a particle is defined to be

$$\vec{p} = m\vec{v}$$
.

If we take a derivative:

$$\frac{d\vec{p}}{dt} = \frac{d(m\vec{v})}{dt} = m\frac{d\vec{v}}{dt} = m\vec{a}$$

We can re-write Newton's 2nd Law using \vec{p} :

$$\vec{F}_{net} = \frac{d\vec{p}}{dt}$$

The momentum of a system of particles is just

$$\vec{P} = M\vec{v}_{\rm com}$$
.

We then get

$$\vec{F}_{net} = \frac{d\vec{P}}{dt}$$

When two objects collide there is a time varying force between them:

The impulse is a summation of the total change in momentum.

If there are no external forces then momentum is conserved.

$$\frac{d\vec{P}}{dt} = \vec{F}_{net} = 0 \rightarrow \vec{P} = \text{constant}$$

Mathematically, we can write $\vec{P}_{before} = \vec{P}_{after}$ for

- Collisions
- Explosions

During an elastic collision, kinetic energy is conserved.

$$K_i = K_f$$
 or $K = K'$
 $\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1{v_1'}^2 + \frac{1}{2}m_2{v_2'}^2$
 $m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$

Examples:

- ► Bouncy-balls colliding
- Carts with springs for bumpers

If an object of mass m_1 is shot at a stationary target of mass m_2 at a speed of v_{1i} , what are the speeds of the two objects after an elastic collision?

If an object of mass m_1 is shot with speed v_{1i} at a moving target of mass m_2 at a speed of v_{2i} , what are the speeds of the two objects after an elastic collision?

During an inelastic collision, some kinetic energy is transferred to another form (e.g. heat or sound).

Example: two pool balls striking

Examples:

1. Three particles of masses $m_1=2$ kg, $m_2=3$ kg, and $m_3=5$ kg are arranged in the xy plane, as shown in the figure below. Find the position vector of the center of mass.

Solution

We know that the position vector of the center of mass is defined as:

$$\vec{r}_{cm} = x_{cm}\hat{i} + y_{cm}\hat{j} + z_{cm}\hat{k}$$

The components of the coordinate of the center of mass are

$$x_{cm} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{M} = \frac{2 \times 0 + 3 \times 2 + 5 \times 1}{2 + 3 + 5} = 1.1 m$$

$$y_{cm} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3}{M} = \frac{2 \times 0 + 3 \times 1 + 5 \times 2}{2 + 3 + 5} = 1.3 m$$

$$z_{cm} = \frac{m_1 z_1 + m_2 z_2 + m_3 z_3}{M} = \frac{2 \times 0 + 3 \times 0 + 5 \times 0}{2 + 3 + 5} = 0.0 m$$

4. Four particles of masses $m_1=2$ kg, $m_2=4$ kg, and $m_3=m_4=3$ kg have the following velocities: $\vec{v}_1=3\hat{i}+4\hat{j}$, $\vec{v}_2=5\hat{i}-\hat{j}$, $\vec{v}_3=-4\hat{i}$, and $\vec{v}_4=2\hat{j}$, where the velocities are measured in m/s. Find the linear momentum of the center of mass of the system.

Solution

The linear momentum of the center of mass of the system is

$$\begin{split} \vec{p}_{cm} &= M \vec{v}_{cm} = m_1 \vec{v}_1 + m_2 \vec{v}_2 + m_3 \vec{v}_3 + m_4 \vec{v}_4 \\ \vec{p}_{cm} &= 2 \times \left(3\hat{i} + 4\hat{j} \right) + 4 \times \left(5\hat{i} - \hat{j} \right) + 3 \times \left(-4\hat{i} \right) + 3 \times \left(-2\hat{j} \right) \\ \vec{p}_{cm} &= 14\hat{i} - 2\hat{j} \end{split}$$

5. A motorcycle of mass 120 kg moves with a fixed speed of 15 m/s. Calculate the magnitude of its linear momentum.

Solution

The magnitude of the linear momentum is

$$p = mv = 120 \times 15 = 1800 \ kg \ m/s$$

6. A car is moving with a constant speed of 27 m/s. If its momentum is 21600 kg.m/s, what is its mass?

Solution

The magnitude of the linear momentum is defined as

$$p = mv$$

Therefore the mass is obtained by

$$m = \frac{p}{v} = \frac{21600}{27} = 800 \text{ kg}$$