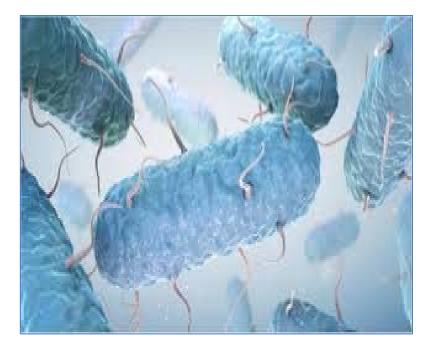
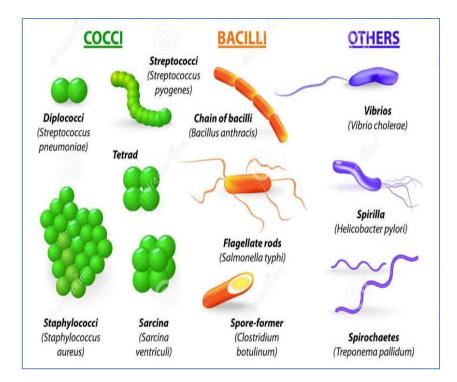
Al- Mustaqbal university college Department of radiology technologies 1.St stage Lecture 6




# Bacteria

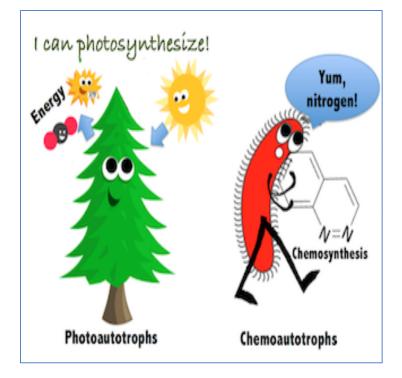
MSc Zahraa Sami Mohammed


## What are bacteria?

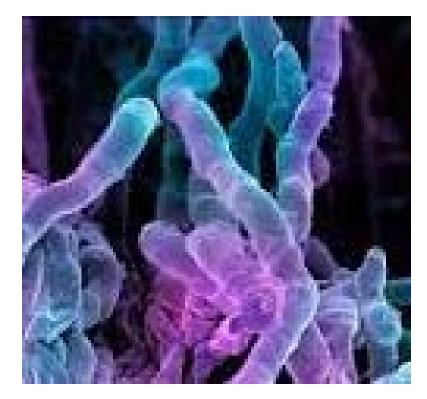
- Bacteria are single-celled organisms that are pretty much everywhere: in the ground, in the ocean, on your hands and in your gut.
- While some are harmful, most are not and some are even beneficial to human health.
- In many cases, humans live in symbiosis with bacteria, maintaining a mutually beneficial relationship without even knowing it



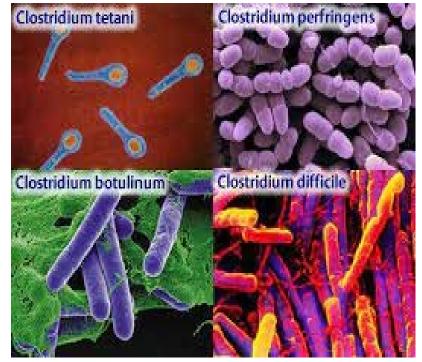
#### **Bacterial Shapes**


- Bacteria come in five basic shapes: spherical, cylindrical, comma-shaped, and spiral.
- The scientific names for these shapes are cocci (round), bacilli (cylindrical), vibrio's (comma-shaped), spirochaetes (corkscrew) and spirilla (spiral).
- The shapes and configurations of bacteria are often reflected in their names. For example, the milk-curdling Lactobacillus acidophilus are bacilli,

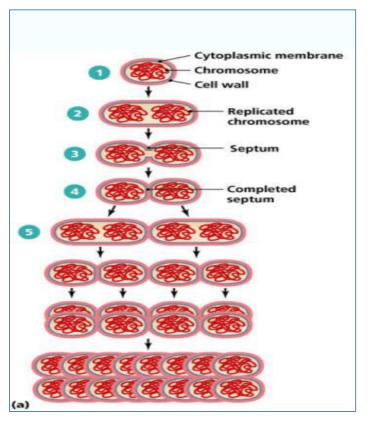



- In order to grow successfully, microorganisms must have a supply of water as well as numerous other substances including mineral elements, growth factors, and gas, such as oxygen.
- Virtually all chemical substances in microorganisms contain carbon in some form, whether they be proteins, fats, carbohydrates, or lipids.
- Carbon can be obtained from organic materials in the environment, or it may be derived from carbon dioxide.
- Both chemoautotrophic and photoautotrophic microorganisms obtain their energy and produce their nutrients from simple inorganic compounds such as carbon dioxide.




- Chemoautotrophs do so through chemical reactions, while photoautotrophs use photosynthesis
- Among the other elements required by microorganisms are nitrogen and phosphorous.
- Nitrogen is: used for the synthesis of proteins, amino acids, DNA, and RNA.
- Bacteria that obtain nitrogen directly from the atmosphere are called nitrogen-fixing bacteria. They include species of Rhizobium and Azotobacter, both found in the soil.
- Phosphorus is an essential element for nucleic acid synthesis and for the construction of phospholipids.




- Oxygen: is used by aerobic bacteria during the process of cellular respiration as a final electron acceptor.
- For aerobic organisms, oxygen is an absolute requirement for their energyyielding properties.
- Certain microorganisms grow in oxygenfree environments and are described as anaerobic. Organisms such as these produce odoriferous gases in their metabolism, including hydrogen sulfide gas and methane.



- Certain pathogenic species, such as Clostridium species, are anaerobic. Certain species of microorganisms are said to be facultative.
- These species grow in either the presence or absence of oxygen. Some bacteria species are microaerophilic, meaning that they grow in low concentrations of oxygen.
- In some cases, these organisms must have an environment rich in carbon dioxide. Organisms such as these are said to be capnophilic

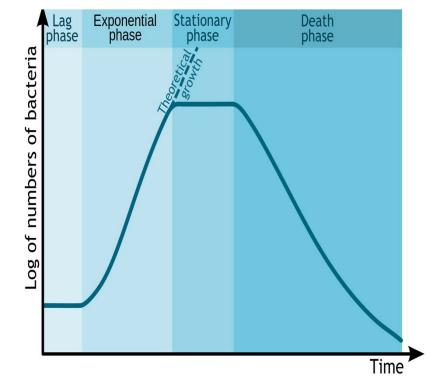


- Other chemical requirements for microbial growth include such trace elements as iron, copper, and zinc.
- These elements often are used for the synthesis of enzymes.
- Organic growth factors such as vitamins may also be required by certain bacteria.
- Amino acids, purines, and pyrimidines should also be available.



## Physical Growth Requirements

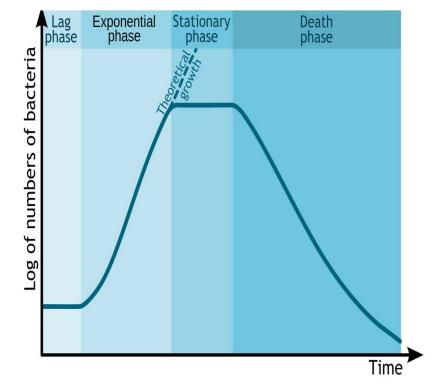
- Certain physical conditions affect the type and amount of microbial growth.
- For example, enzyme activity depends on the temperature of the environment, and microorganisms are classified in three groups according to their temperature preferences:
- 1. Psychrophilic organisms (psychrophiles) prefer cold temperatures of about 0°C to 20°C;
- 2. Mesophilic organisms (mesophiles) prefer temperatures at 20°C to 40°c.
- 3. Thermophilic organisms (thermophiles) prefer temperatures higher than 40°C A minimum and a maximum growth temperature range exist for each species.
- The temperature at which best growth occurs is the optimum growth temperature.


#### Bacterial growth curve

The bacterial growth curve represents the number of live cells in a bacterial population over a period of time.

There are four distinct phases of the growth curve:

**1.Lag:** During lag phase, bacteria adapt themselves to growth conditions. It is the period where the individual bacteria are maturing and not yet able to divide.


**2.Exponential (log):**The log phase (sometimes called the logarithmic phase or the exponential phase) is a period characterized by cell doubling. The number of new bacteria appearing per unit time is proportional to the present population.



#### Bacterial growth curve

**3.Stationary** :is often due to a growthlimiting factor such as the depletion of an essential nutrient, and/or the formation of an inhibitory product such as an organic acid. Stationary phase results from a situation in which growth rate and death rate are equal

**4.Death phase:** At death phase (decline phase), bacteria die. This could be caused by lack of nutrients, environmental temperature above or below the tolerance band for the species, or other injurious conditions.



## Thank You