

## Viscosity

 The resistance to flow. The thicker a liquid, the higher the viscosity (the slower a liquid moves).





What has higher viscosity, water or honey?

Viscosity usually dec

What is more viscous, oil in a hot wok or oil in a cold wok?

# **Viscosity**

- Blood viscosity can be described as the thickness and stickiness of blood.
- It is a measure of the resistance of blood to flow.
- The viscocity of blood is 5 times more than that of water
  - (based on time taken for the flow of both in a tube)
- It depends on :
  - **RBCs**
  - Plasma proteins

## Measurement units of viscosity

- pascal seconds (Pa·s)
- millipascal second (mPa·s)
- centipoise (cP)

### Viscosity of liquid

<u>Purpose</u>: To determine the viscosity of medium by using a small sphere falls with a constant terminal velocity

#### Apparatus:

- 1-A long glass tube about 50cm long closed at one end
- 2- Glycerin
- 3- Meter scale
- 4-small sphere
- 5- Rubber bands
- 6- Manget
- 7-Stop-watch

#### Method:

- 1- Adjust the distance between the rubber bands.
- 2- Record the distance (h) between them (about 30cm)
- 3- Drop a sphere centrally down the tube and with stop-watch find the time it take to traverse the distance between the rubber bands
- 4- Obtain two values of the time of fall
- 5- Repeat the experience for the different values of (h) and obtain two values of the time of fall for each new distance apart



# <u>reading</u>:

| Distance between | (time of fall) |
|------------------|----------------|
| the rubber h(cm) | T(Sec)         |
|                  |                |
|                  |                |
|                  |                |

Plot a graph with value of (h)(cm) as ordinates against the corresponding value of T(Sec)

Slope=h/T=Velocity (cm/sec)

To deduce the velocity  $(\eta)$  for liquid ,use the following equation

$$\eta = \frac{g(\rho - \sigma)d^2}{18.V}$$

 $g=980 \text{ cm/sec}^2$ 

$$\rho$$
=density of sphere  $\rho = \frac{m}{\frac{4}{3}\pi r^3}$ 

σ=density of liquid =1.231gm/cm<sup>3</sup> V=Velocity (slope)



## Micrometer

