
4 
Event Detection 

Biomedical signals carry signatures of physiological events. The part of a signal 
related to a specific event of interest is often referred to as an epoch. Analysis 
of a signal for monitoring or diagnosis requires the identification of epochs and 
investigation of the corresponding events. Once an event has been identified, the 
corresponding waveform may be segmented and analyzed in terms of its amplitude, 
waveshape (morphology), time duration, intervals between events, energy distribu- 
tion, frequency content, and so on. Event detection is thus an important step in 
biomedical signal analysis. 

4.1 PROBLEM STATEMENT 

A generic problem statement applicable to the theme of this chapter may be formu- 
lated as follows: 

Given a biomedical signal, identify discrete signal epochs and correlate them 
with events in the related physiological process. 

In the sections to follow, we shall first study a few examples of epochs in different 
biomedical signals, with the aim of understanding the nature of the related physio- 
logical events. Such an understanding will help in the subsequent development of 
signal processing techniques to emphasize, detect, and analyze epochs. 
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4.2 ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES 

The following sections provide illustrations of several events in biomedical signals. 
The aim of the illustrations is to develop an appreciation of the nature of signal 
events. A good understanding of signal events will help in designing appropriate 
signal processing techniques for their detection. 

4.2.1 The P, QRS, and T waves In the ECG 

As we have already observed in Section 1.2.4, a cardiac cycle is reflected in a period 
of the repetitive ECG signal as the series of waves labeled as P, QRS, and T. If we 
view the cardiac cycle as a series of events, we have the following epochs in an ECG 
waveform: 

0 The P wave: Contraction of the atria is triggered by the SA-node impulse. The 
atria do not possess any specialized conduction nerves as the ventricles do; as 
such, contraction of the atrial muscles takes place in a slow squeezing manner, 
with the excitation stimulus being propagated by the muscle cells themselves. 
For this reason, the P wave is a slow waveform, with a duration of about 80 ms. 
The P wave amplitude is much smaller (about 0.1 - 0.2 mV) than that of the 
QRS because the atria are smaller than the ventricles. The P wave is the epoch 
related to the event of atrial contraction. (Atrial relaxation does not produce 
any distinct waveform in the ECG as it is overshadowed by the following QRS 
wave.) 

0 The PQ segment: The AV node provides a delay to facilitate completion 
of atrial contraction and transfer of blood to the ventricles before ventricular 
contraction is initiated. The resulting PQ segment, of about 80 ma duration, 
is thus a “non-event”; however, it is important in recognizing the base-line as 
the interval is almost always iso-electric. 

0 The QRS wave: The specialized system of Purkinje fibers stimulate contrac- 
tion of ventricular muscles in a rapid sequence from the apex upwards. The 
almost-simultaneous contraction of the entire ventricular musculature results 
in a sharp and tall QRS complex of about 1 mV amplitude and 80 - 100 rns 
duration. The event of ventricularcontraction is represented by the QRS epoch. 

0 The ST segment: The normally flat (iso-electric) ST segment is related to 
the plateau in the action potential of the left ventricular muscle cells (see 
Figure 1.3). The duration of the plateau in the action potential is about 200 ms; 
the ST segment duration is usually about 100 - 120 ms. As in the case of the 
PQ segment, the ST segment may also be termed as a non-event. However, 
myocardial ischemia or infarction could change the action potentials of a 
portion of the left ventricular musculature, and cause the ST segment to be 
depressed (see Figure 1.28) or elevated. The PQ segment serves as a useful 
reference when the iso-electric nature of the ST segment needs to be verified. 
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0 The T wave: The T wave appears in a normal ECG signal as a discrete wave 
separated from the QRS by an iso-electric ST segment. However, it relates 
to the last phase of the action potential of ventricular muscle cells, when the 
potential returns from the plateau of the depolarized state to the resting potential 
through the process of repolarization [23]. The T wave is commonly referred 
to as the wave corresponding to ventricular relaxation. While this is indeed 
correct, it should be noted that relaxation through repolarization is but the final 
phase of contraction: contraction and relaxation are indicated by the upstroke 
and downstroke of the same action potential. For this reason, the T wave may 
be said to relate to a nonspecific event. 
The T wave is elusive, being low in amplitude (0.1 - 0.3 mV) and being a 
slow wave extending over 120 - 160 ma. It is almost absent in many ECG 
recordings. Rather than attempt to detect the often obscure T wave, one may 
extract a segment of the ECG 80 - 360 ms from the beginning of the QRS and 
use it to represent the ST segment and the T wave. 

4.2.2 The first and second heart sounds 
We observed in Section 1.2.8 that the normal cardiac cycle manifests as a series of 
the first and second heart sounds - S 1 and S2. Murmurs and additional sounds may 
appear in the presence of cardiovascular diseases or defects. We shall concentrate on 
S 1, S2, and murmurs only. 

0 The first heart sound S1: S 1 reflects a sequence of events related to ventricular 
contraction - closure of the atrio-ventricular valves, isovolumic contraction, 
opening of the semilunar valves, and ejection of the blood from the ventricles 
[23]. The epoch of S1 is directly related to the event of ventricular contraction. 

0 The second heart sound S2: S2 is related to the end of ventricular contraction, 
signified by closure of the aortic and pulmonary valves. As we observed in 
the case of the T wave, the end of ventricular contraction cannot be referred 
to as a specific event per se. However, in the case of S2, we do have the 
specific events of closure of the aortic and pulmonary valves to relate to, as 
indicated by the corresponding A2 and P2 components of S2. Unfortunately, 
separate identification of A2 and P2 is confounded by the fact that they usually 
overlap in normal signals. If A2 and P2 are separated due to a cardiovascular 
disorder, simultaneous multi-site PCG recordings will be required to identify 
each component definitively as they may be reversed in order (see Tavel [41] 
and Rushmer [23]). 

0 Murmurs: Murmurs, if present, could be viewed as specific events. For ex- 
ample, the systolic murmur of aortic stenosis relates to the event of turbulent 
ejection of blood from the left ventricle through a restricted aortic valve open- 
ing. The diastolic murmur in the case of aortic insufficiency corresponds to 
the event of regurgitation of blood from the aorta back into the left ventricle 
through a leaky aortic valve. 
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4.2.3 The dicrotlc notch in the carotid pulse 

As we saw in Sections 1.2.9 and 1.2.10, closure of the aortic valve causes a sudden 
drop in aortic pressure that is already on a downward slope at the end of ventricular 
systole. The dicrotic notch inscribed in the carotid pulse is a delayed, upstream 
manifestation of the incisura in the aortic pressure wave. The dicrotic notch is a 
specific signature on the relatively nondescript carotid pulse signal, and may be taken 
as an epoch related to the event of aortic valve closure (albeit with a time delay); the 
same event also signifies the end of ventricular systole and ejection as well as the 
beginning of S2 and diastole. 

4.2.4 EEG rhythms, waves, and transients 

We have already studied a few basic characteristics of the EEG in Section 1.2.5, and 
noted the nature of the a, 0, 8, and 8 waves. We shall now consider a few events 
and transients that occur in EEG signals [32, 33, 34, 96,97, 981. Figure 4.1 shows 
typical manifestations of the activities described below [32]. 

0 K-complex: This is a transient complex waveform with slow waves, sometimes 
associated with sharp components, and often followed by 14 H r  waves. It 
occurs spontaneously or in response to a sudden stimulus during sleep, with 
an amplitude of about 200 pV. 

0 Lambda waves: These are monophasic, positive, sharp waves that occur in 
the occipital location with an amplitude of less than 50 pV.  They are related 
to eye movement, and are associated with visual exploration. 

0 Mu rhythm: This rhythm appears as a group of waves in the frequency 
range of 7 - 11 Hz with an arcade or comb shape in the central location. 
The mu rhythm usually has an amplitude of less than 50 p V ,  and is blocked 
or attenuated by contralateral movement, thought of movement, readiness to 
move, or tactile stimulation. 

0 Spike: A spike is defined as a transient with a pointed peak, having a duration 
in the range of 20 - 30 ms. 

0 Sharp wave: A sharp wave is also a transient with a pointed peak, but with a 
longer duration than a spike, in the range of 70 - 200 ms. 

0 Spike-and-wave rhythm: A sequence of surface-negative slow waves in the 
frequency range of 2.5 - 3.5 Hz and having a spike associated with each wave 
is referred to as a spike-and-wave rhythm. There could be several spikes of 
amplitude up to 1,000 pV in each complex, in which case the rhythm is called 
a polyspike-and-wave complex. 

0 Sleep spindle: This is an episodic rhythm at about 14 Hz and 50 pV,  
occurring maximally over the fronto-central regions during certain stages of 



ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES 181 

Figure 4.1 From top to bottom: (a) the K-complex; (b) the lambda wave; (c) the mu rhythm; 
(d) a spike; (e) sharp waves; ( f )  spike-and-wave complexes; (g) a sleep spindle; (h) vertex sharp 
waves; and (i) polyspike discharges. The horizontal bar at the bottom indicates a duration 
of 1 8 ;  the vertical bars at the right indicate 100 p V .  Reproduced with permission from R. 
Cooper, J.W. Osselton, and J.C. Shaw, EEG Technology, 3rd Edition, 1980. @Butterworth 
Heinemann Publishers, a division of Reed Educational & Professional Publishing Ltd., Oxford, 
UK. 
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sleep. A spindle is defined, in general, as a short sequence of monomorphic 
waves having a fusiform appearance [33]. 

0 Vertex sharp transient or V-wave: This wave is a sharp potential that is 
maximal at the vertex at about 300 pV and is negative in relation to the EEG 
in other areas. It occurs spontaneously during sleep or in response to a sensory 
stimulus during sleep or wakefulness. 

In addition to the above, the term “burst” is used to indicate a phenomenon 
composed of two or more waves that are different from the principal (background) 
activity in terms of amplitude, frequency, or waveform. A burst is abrupt and has a 
relatively short duration [33]. 

An EEG record is described in terms of [32] 

0 the most persistent rhythm (for example, a); 

0 the presence of other rhythmic features, such as S,6, or p; 

0 discrete features of relatively long duration, such as an episode of spike-and- 

0 discrete features of relatively short duration, such as isolated spikes or sharp 

0 the activity remaining when all the previous features have been described, 

0 artifacts, if any, giving rise to ambiguity in interpretation. 

Each of the EEG waves or activities is described in chronological sequence in terms 
of amplitude; frequency, in the case of rhythmic features; waveform, in the case of 
both rhythmic and transient features; location or spatial distribution; incidence or 
temporal variability; right - left symmetry in location of activity; and responsiveness 
to stimuli, such as eye opening and closure. The EEG record at rest is first described as 
above; effects of evocative techniques are then specified in the same terms. Behavioral 
changes, such as the subject becoming drowsy or falling asleep, are also noted [32]. 

The EEG signals in Figure 1.22 demonstrate the presence of the a rhythm in all 
the channels. The EEG signals in Figure 1.23 depict spike-and-wave complexes in 
almost all the channels. 

wave activity; 

waves; 

referred to as background activity; and 

4.3 DETECTION OF EVENTS AND WAVES 

We shall now see how the knowledge that we have gained so far of several biomed- 
ical signal events may be applied to develop signal processing techniques for their 
detection. Each of the following subsections will deal with the problem of detection 
of a specific type of event. The techniques described should find applications in the 
detection of other events of comparable characteristics. 
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4.3.1 Derivative-based methods for QRS detection 

Problem: Develop signal processing techniques to facilitate detection of the QRS 
complex, given that it is the sharpest wave in an ECG cycle. 

Solution 1: We noted in Section 1.2.4 that the QRS complex has the largest slope 
(rate of change of voltage) in a cardiac cycle by virtue of the rapid conduction and 
depolarization characteristics of the ventricles. As the rate of change is given by the 
derivative operator, the -$ operation would be the most logical starting point in an 
attempt to develop an algorithm to detect the QRS complex. 

We saw in Section 3.3.3 that the derivative operator enhances the QRS, although 
the resulting wave does not bear any resemblance to a typical QRS complex. Observe 
in Figures 3.24 and 3.25 that the slow P and T waves have been suppressed by the 
derivative operators, while the output is the highest at the QRS. However, given the 
noisy nature of the results of the derivative-based operators, it is also evident that 
significant smoothing will be required before further processing can take place. 

Balda et al. [99] proposed a derivative-based algorithm for QRS detection, which 
was further studied and evaluated by Ahlstrom and Tompkins [lOO], Friesen et 
al. [ loll ,  and Tompkins [27]. The algorithm progresses as follows. In a manner 
similar to Equation 3.45, the smoothed three-point first derivative yo (n)  of the given 
signal z(n) is approximated as 

(4.1) Yo(n) = 14.) - z(n - 211. 

yl(n) = 1 ~ ( n )  - 2 4 ~ 1 -  2) + z(n - 4)l. 

Yz(n) = 1.3Yo(n) 4- l-lYi(n). 

The second derivative is approximated as 

(4.2) 

The two results are weighted and combined to obtain 

(4.3) 

The result ya(n) is scanned with a threshold of 1.0. Whenever the threshold is 
crossed, the subsequent eight samples are also tested against the same threshold. If 
at least six of the eight points pass the threshold test, the segment of eight samples is 
taken to be a part of a QRS complex. The procedure results in a pulse with its width 
proportional to that of the QRS complex; however, the method is sensitive to noise. 

Illustration of application: Figure 4.2 illustrates, in the top-most trace, two 
cycles of a filtered version of the ECG signal shown in Figure 3.5. The signal was 
filtered with an eighth-order Butterworth lowpass filter with fc = 90 Hz, down- 
sampled by a factor of five, and filtered with a notch filter with fo = 60 Hz. The 
effective sampling rate is 200 Hz. The signal was normalized by dividing by its 
maximum value. 

The second and third plots in Figure 4.2 show the derivatives yo(n) and yl(n), 
respectively; the fourth plot illustrates the combined result yz(n). Observe the 
relatively high values in the derivative-based results at the QRS locations; the outputs 
are low or negligible at the P and T wave locations, in spite of the fact that the original 
signal possesses an unusually sharp and tall T wave. It is also seen that the results 
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Figure 4.2 From top to bottom: two cycles of a filtered version of the ECG signal shown 
in Figure 3.5; output yo(n) of the first-derivative-based operator in Equation 4.1; output 
yl (n) of the second-derivative-based operator in Equation 4.2; the combined result (n) 
from Equation 4.3; and the result gs(n) of passing ga(n) through the 8-point MA filter in 
Equation 3.27. 
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have multiple peaks over the duration of the QRS wave, due to the fact that the QRS 
complex includes three major swings: Q - R, R - S, and S - ST base-line in the 
present example (an additional PQ base-line - Q swing may also be present in other 
ECG signals). 

The last plot in Figure 4.2 shows the smoothed result y ~ ( n )  obtained by passing 
yz(n) through the %point MA filter in Equation 3.27. We now have a single pulse 
with amplitude greater than 1.0 over the duration of the corresponding QRS complex. 
A simple peak-searching algorithm may be used to detect each ECG beat. The net 
delay introduced by the filters should be subtracted from the detected peak location 
in order to obtain the corresponding QRS location. 

Note that peak searching cannot be performed directly on an ECG signal: the QRS 
might not always be the highest wave in a cardiac cycle, and artifacts may easily upset 
the search procedure. Observe also that the ECG signal in the present illustration was 
filtered to a restricted bandwidth of 90 Hz before the derivatives were computed, 
and that it is free of base-line drift. 

Solution 2: Murthy and Rangaraj [lo21 proposed a QRS detection algorithm 
based upon a weighted and squared first-derivative operator and an MA filter. In this 
method, a filtered-derivative operator was defined as 

N 
g1(n) = c ls(n - i + 1) - s(n - i)12(N - i + l), (4.4) 

where s(n) is the ECG signal, and N is the width of a window within which first- 
order differences are computed, squared, and weighted by the factor (N - i + 1). 
The weighting factor decreases linearly from the current difference to the difference 
N samples earlier in time, and provides a smoothing effect. Further smoothing of 
the result was performed by an MA filter over M points to obtain 

i=l 

With a sampling rate of 100 Hz, the filter window widths were set as M = N = 8. 
The algorithm provides a single peak for each QRS complex and suppresses P and T 
waves. 

Searching for the peak in a processed signal such as g(n)  may be accomplished 
by a simple peak-searching algorithm as follows: 

1. Scan a portion of the signal g ( n )  that may be expected to contain a peak and 
determine the maximum value gmsx. The maximum of g(n) over its entire 
available duration may also be taken to be gmax. 

2. Define a threshold as a fraction of the maximum, for example, Th = 0.5 gmm. 

3. For all g(n) > Th, select those samples for which the corresponding g(n) 
values are greater than a certain predefined number M of preceding and suc- 
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ceeding samples of g(n), that is, 

C p } =  [ n Ig(n)  > Th ] A N D  (4.6) 

[ g ( n )  > g(n - i), i = 1,2, . . . , M ] AND 
[ g(n) > g ( n + i ) , i  = 1,2,* . . ,M 1. 

The set {p} defined as above contains the indices of the peaks in g(n) .  

Additional conditions may be imposed to reject peaks due to artifacts, such as 
a minimum interval between two adjacent peaks. A more elaborate peak-searching 
algorithm will be described in Section 4.3.2. 

Illustration of application: Figure 4.3 illustrates, in the top-most trace, two 
cycles of a filtered version of the ECG signal shown in Figure 3.5. The signal 
was filtered with an eighth-order Buttenvorth lowpass filter with fc = 40 H z ,  and 
down-sampled by a factor of ten. The effective sampling rate is 100 HE to match 
the parameters used by Murthy and Rangaraj [ 1021. The signal was normalized by 
dividing by its maximum value. 
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Figure 4.3 From top to bottom: two cycles of a filtered version of the ECG signal shown in 
Figure 3.5; output g1(n) of the weighted and squared first-derivative operator in Equation 4.4; 
output g ( n )  of the smoothing filter in Equation 4.5. 

The second and third plots in Figure 4.3 show the outputs of the derivative-based 
operator and the smoothing filter. Observe that the final output contains a single, 
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smooth peak for each QRS, and that the P and T waves produce no significant 
output. A simple peak-searching algorithm may be used to detect and segment each 
beat [ 1021. 

Moving-window 
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4.3.2 The Pan-Tompkins algorithm for QRS detection 

Problem: Propose an algorithm to detect QRS complexes in an ongoing ECG signal. 
Solution: Pan and Tompkins [103, 271 proposed a real-time QRS detection al- 

gorithm based on analysis of the slope, amplitude, and width of QRS complexes. 
The algorithm includes a series of filters and methods that perform lowpass, high- 
pass, derivative, squaring, integration, adaptive thresholding, and search procedures. 
Figure 4.4 illustrates the steps of the algorithm in schematic form. 

Figure 4.4 Block diagram of the Pan-Tompkins algorithm for QRS detection. 

Lowpass filter: The recursive lowpass filter used in the Pan-Tompkins algorithm 
has integer coefficients to reduce computational complexity, with the transfer function 
defined as 

1 (1 - z-6)2 
H ( z )  = - 

32 ( l - . ~ - l ) ~  * 
(4.7) 

(See also Equations 3.37 and 3.38.) The output y ( n )  is related to the input z(n) as 

1 
~ ( n )  = 2y(n - 1) - ~ ( n  - 2) + - [.(TI) - 2a(n - 6) + z(n - 12)]. 

32 (4.8) 

With the sampling rate being 200 H z ,  the filter has a rather low cutoff frequency 
of fc = 11 Hz, and introduces a delay of 5 samples or 25 ms. The filter provides 
an attenuation greater than 35 dB at 60 Hz, and effectively suppresses power-line 
interference, if present. 

Highpass filter: The highpass filter used in the algorithm is implemented as an 
allpass filter minus a lowpass filter. The lowpass component has the transfer function 

(1 - 2-37 

(1 - 2-1) ’ H l p ( 4  = 

the input - output relationship is 

~ ( n )  = ~ ( n  - 1) + ~ ( n )  - ~ ( n  - 32). 

The transfer function Hhp(z)  of the highpass filter is specified as 
, 

(4.9) 

(4.10) 

(4.1 1) 
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Equivalently, the output p(n)  of the highpass filter is given by the difference equation 

(4.12) 
1 

32 
p(n)  = z(n - 16) - - [ ~ ( n  - 1) + ~ ( n )  - z(n - 32)], 

with z(n) and y(n) being related as in Equation 4.10. The highpass filter has a cutoff 
frequency of 5 H z  and introduces a delay of 80 me. 

Derivative operator: The derivative operation used by Pan and Tompkins is 
specified as 

(4.13) 

and approximates the ideal 4 operator up to 30 H z .  The derivative procedure 
suppresses the low-frequency components of the P and T waves, and provides a 
large gain to the high-frequency components arising from the high slopes of the QRS 
complex. (See Section 3.3.3 for details on the properties of derivative-based filters.) 

Squaring: The squaring operation makes the result positive and emphasizes large 
differences resulting from QRS complexes; the small differences arising from P and 
T waves are suppressed. The high-frequency components in the signal related to the 
QRS complex are further enhanced. 

Integration: As observed in the previous subsection, the output of a derivative- 
based operation will exhibit multiple peaks within the duration of a single QRS 
complex. The Pan-Tompkins algorithm performs smoothing of the output of the 
preceding operations through a moving-window integration filter as 

1 
y(n) = - [2~(n) + z(n - 1) - ~ ( n  - 3) - 2s(n - 4)], 

8 

1 
y(n) = [z(n - ( N  - 1)) + z(n - ( N  - 2)) + * + .(.)I. (4.14) 

The choice of the window width N is to be made with the following considerations: 
too large a value will result in the outputs due to the QRS and T waves being merged, 
whereas too small a value could yield several peaks for a single QRS. A window 
width of N = 30 was found to be suitable for fb = 200 Hz. Figure 4.5 illustrates 
the effect of the window width on the output of the integrator and its relationship to 
the QRS width. (See Section 3.3.2 for details on the properties of moving-average 
and integrating filters.) 

Adaptive thresholding: The thresholding procedure in the Pan-Tompkins algo- 
rithm adapts to changes in the ECG signal by computing running estimates of signal 
and noise peaks. A peak is said to be detected whenever the final output changes 
direction within a specified interval. In the following discussion, S P K I  represents 
the peak level that the algorithm has learned to be that corresponding to QRS peaks, 
and N P K I  represents the peak level related to non-QRS events (noise, EMG, etc.). 
T H R E S H O L D  I1 and T H R E S H O L D  I 2  are two thresholds used to categorize 
peaks detected as signal (QRS) or noise. 

Every new peak detected is categorized as a signal peak or a noise peak. If a peak 
exceeds T H R E S H O L D  I1 during the first step of analysis, it is classified as a QRS 
(signal) peak. If the searchback technique (described in the next paragraph) is used, 

I 
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R 

T 

Figure 4.5 The relationship of a QRS complex to the moving-window integrator output. 
Upper plot: Schematic ECG signal. Lower plot: Output of the moving-window integrator. 
QS: QRS complex width. W width of the integrator window, given as N/ f, 8.  Adapted from 
Tompkins (271. 

the peak should be above T H R E S H O L D  I 2  to be called a QRS. The peak levels 
and thresholds are updated after each peak is detected and classified as 

if P E A K I  is a signal peak; (4.15) 
if P E A K I  is a noise peak; 

SPKI = 0.125 P E A K I  + 0.875 SPKI 
NPKI = 0.125 P E A K I  + 0.875 NPKI 

T H R E S H O L D  I1 = NPKI + 0.25(SPKI - NPKI); (4.16) 
T H R E S H O L D  I 2  = 0.5 T H R E S H O L D  II .  

The updating formula for SPKI is changed to 

SPKI = 0.25 P E A K I  + 0.75 SPKI (4.17) 

if a QRS is detected in the searchback procedure using T H R E S H O L D  12. 
Searchback procedure: The Pan-Tompkins algorithm maintains two RR-interval 

averages: RR AVERAGE1 is the average of the eight most-recent beats, and RR 
AVERAGE2 is the average of the eight most-recent beats having R R  intervals 
within the range specified by RR LOW L I M I T  = 0.92 x R R  AVERAGE2 
and RR H I G H  L I M I T  = 1.16 x R R  AVERAGE2. Whenever a QRS is 
not detected for a certain interval specified as RR MISSED L I M I T  = 1.06 x 
RR AVERAGE2, the QRS is taken to be the peak between the established thresh- 
olds applied in the searchback procedure. 
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The algorithm performed with a very low error rate of 0.68%, or 33 beats per hour 
on a database of about 116,000 beats obtained from 24-hour records of the ECGs of 
48 patients (see Tompkins [27] for details). 

Illustration of application: Figure 4.6 illustrates, in the top-most trace, the 
same ECG signal as in Figure 4.2. The Pan-Tompkins algorithm as above was 
implemented in MATLAB. The outputs of the various stages of the algorithm are 
illustrated in sequence in the same figure. The observations to be made are similar 
to those in the preceding section on the derivative-based method. The derivative 
operator suppresses the P and T waves and provides a large output at the QRS 
locations. The squaring operation preferentially enhances large values, and boosts 
high-frequency components. The result still possesses multiple peaks for each QRS, 
and hence needs to be smoothed. The final output of the integrator is a single smooth 
pulse for each QRS. Observe the shift between the actual QRS location and the pulse 
output due to the cumulative delays of the various filters. The thresholding and search 
procedures and their results are not illustrated. More examples of QRS detection will 
be presented in Sections 4.9 and 4.10. 
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Figure 4.6 Results of the Pan-Tompkins algorithm. From top to bottom: two cycles of a 
filtered version of the ECG signal shown in Figure 3.5 (the same as that in Figure 4.2); output 
of the bandpass filter (BPF, a combination of lowpass and highpass filters); output of the 
derivative-based operator; the result of squaring; and lOOx the result of the final integrator. 
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4.3.3 Detection of the dicrotic notch 

Problem: Propose a method to detect the dicrotic notch in the carotid pulse signal. 
Solution: Lehner and Rangayyan [66] proposed a method for detection of the 

dicrotic notch that used the least-squares estimate of the second derivative p(n)  of 
the carotid pulse signal ~ ( n )  defined as 

p(n) = 29(n - 2) - ~ ( n  - 1) - 29(n) - ~ ( n  + 1) + 2y(n + 2). (4.18) 

Observe that this expression is noncausal; it may be made causal by adding a delay 
of two samples. 

The second derivative was used due to the fact that the dicrotic notch appears 
as a short wave riding on the downward slope of the carotid pulse signal (see also 
Starmer et al. [ 1041). A first-derivative operation would give an almost-constant 
output for the downward slope. The second-derivative operation removes the effect 
of the downward slope and enhances the notch itself. The result was squared and 
smoothed to obtain 

s(n) = C p2(n - k + l )w(k) ,  (4.19) 

where w(k) = (M - k + 1) is a linear weighting function, and M = 16 for 
f a  = 256 Hz. 

The method yields two peaks for each period of the carotid pulse signal. The first 
peak in the result represents the onset of the carotid upstroke. The second peak that 
appears in the result within a cardiac cycle is due to the dicrotic notch. To locate the 
dicrotic notch, the local minimum in the carotid pulse within a f 2 0  rns interval of 
the second peak needs to be located. 

Illustration of application: The upper plot in Figure 4.7 illustrates two cycles 
of a carotid pulse signal. The signal was lowpass filtered at 100 He and sampled at 
250 He. The result of application of the Lehner and Rangayyan method to the signal 
is shown in the lower plot. It is evident that the second derivative has successfully 
accentuated the diciotic notch. A simple peak-searching algorithm may be used to 
detect the first and second peaks in the result. The dicrotic notch may then be located 
by searching for the minimum in the carotid pulse signal within a A20 rns interval 
around the second peak location. 

Observe that the result illustrated in Figure 4.7 may benefit from further smoothing 
by increasing the window width M in Equation 4.19. The window width needs to 
be chosen in accordance with the characteristics of the signal on hand as well as 
the lowpass filter and sampling rate used. Further illustration of the detection of the 
dicrotic notch will be provided in Section 4.10. 

M 

k=l 

4.4 CORRELATION ANALYSIS OF EEG CHANNELS 

EEG signals are usually acquired simultaneously over multiple channels. Event 
detection and epoch analysis of EEG signals becomes more complicated than the 
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Figure 4.7 %o cycles of a carotid pulse signal and the result of the Lehner and Rangayyan 
method for detection of the dicrotic notch. 
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problems we have seen so far with the single-channel ECG and carotid pulse signals, 
due to the need to detect similar events across multiple channels. Autocorrelation 
and cross-correlation techniques in both the time and frequency domains serve such 
needs. 

4.4.1 Detection of EEG rhythms 

Problem: Propose a method to detect the presence of the a rhythm in an EEG 
channel. How would you extend the method to detect the presence of the same 
rhythm simultaneously in two EEG channels? 

Solution: Two signals may be compared to detect common characteristics present 
in them via their dot product (also known as the inner or scalar product), defined as 

(4.20) 

where the signals z(n) and y(n) have N samples each. The dot product represents 
the projection of one signal onto the other, with each signal being viewed as an 
N-dimensional vector. The dot product may be normalized by the geometric mean 
of the energies of the two signals to obtain a correlation coefficient as [67] 

(4.21) 

The means of the signals may be subtracted out, if desired, as in Equation 3.18. 

signal onto the other is defined as 
In the case of two continuous-time signals z( t )  and y(t), the projection of one 

(4.22) 

When a shift or time delay may be present in the occurrence of the epoch of interest 
in the two signals being compared, it becomes necessary to introduce a time-shift 
parameter to compute the projection for every possible position of overlap. The shift 
parameter facilitates searching one signal for the occurrence of an event matching 
that in the other signal at any time instant within the available duration of the signals. 
The cross-correlation function (CCF) between two signals for a shift or delay of T 

seconds or k samples may be obtained as 

&,(d = S_,z(t)y(t + T)d4 or (4.23) 

@z,(k) = c z(n)y(n + k). (4.24) 

The range of summation in the latter case needs to be limited to the range of the 
available overlapped data. A scale factor, depending upon the number of data samples 

00 

n 



194 EVENT DETECTION 

used, needs to be introduced to obtain the true CCF, but will be neglected here (see 
Section 6.4). An extended version of the correlation coefficient 'yZv in Equation 4.2 1, 
to include time shift, is provided in Equation 3.18. 

When the ACF or the CCF are computed for various shifts, a question arises about 
the data samples in one of the signal segments beyond the duration of the other. We 
may add zeros to one of the signals and increase its length by the maximum shift 
of interest, or we may use the true data samples from the original signal record, if 
available. The latter method was used wherever possible in the following illustrations. 

In the case of random signals, we need to take the expectation or sample average 
of the outer product of the vectors formed by the available samples of the signals. Let 
x ( n )  = [z(n),z(n-1) ,..., z(n-N+1)ITandy(n)  = [g(n),g(n-l), ...,y( n- 
N + 1)IT represent the N-dimensional vectorial form of the two signals z(n) and 
g(n)  with the most-recent N samples being available in each signal at the time 
instant n. If x(n )  and y(n) are sample observations of random processes, their CCF 
is defined as 

@z, = EIx(4yT(n)l ,  (4.25) 

in a manner similar to what we saw in Equations 3.78 and 3.79. The outer product, 
which is an N x N matrix, provides the cross-terms that include all possible delays 
(shifts) within the duration of the signals. 

All of the equations above may be modified to obtain the ACF by replacing the 
second signal y with the first signal z. The signal 2 is then compared with itself. 

The ACF displays peaks at intervals corresponding to the period (and integral 
multiples thereof) of any periodic or repetitive pattern present in the signal. This 
property facilitates the detection of rhythms in signals such as the EEG: the presence 
of the a rhythm would be indicated by a peak in the neighborhood of 0.1 8 .  The 
ACF of most signals decays and reaches negligible values after delays of a few 
milliseconds, except for periodic signals of infinite or indefinite duration for which 
the ACF will also exhibit periodic peaks. The ACF will also exhibit multiple peaks 
when the same event repeats itself at regular or irregular intervals. One may need 
to compute the ACF only up to certain delay limits depending upon the expected 
characteristics of the signal being analyzed. 

The CCF displays peaks at the period of any periodic pattern present in both 
of the signals being analyzed. The CCF may therefore be used to detect common 
rhythms present between two signals, for example, between two channels of the EEG. 
When one of the functions being used to compute the CCF is a template representing 
an event, such as an ECG cycle as in the illustration in Section 3.3.1 or an EEG 
spike-and-wave complex as in Section 4.4.2, the procedure is known as template 
matching. 

Illustration of application: Figure 4.8 shows, in the upper trace, the ACF of 
a segment of the p4 channel of the EEG in Figure 1.22 over the time interval 
4.67 - 5.81 8 .  The ACF displays peaks at time delays of 0.11 s and its integral 
multiples. The inverse of the delay of the first peak corresponds to 9 Ha, which is 
within the a rhythm range. (The PSD in the lower trace of Figure 4.8 and the others 
to follow will be described in Section 4.5.) It is therefore obvious that the signal 
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segment analyzed contains the a rhythm. A simple peak-search algorithm may be 
applied to the ACF to detect the presence of peaks at specific delays of interest or 
over the entire range of the ACE 
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". - 4 t \  I \ .  1 
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Figure 4.8 Upper trace: ACF of the 4.67 - 5.81 s portion of the p4 channel of the EEG 
signal shown in Figure 1.22. Lower trace: The PSD of the signal segment in dB, given by the 
Fourier transform of the ACE 

To contrast with the preceding example, the upper trace of Figure 4.9 shows the 
ACF of the 4.2 - 4.96 a segment of the f3 channel of the EEG in Figure 1.22. The 
ACF shows no peak in the 0.08 - 1.25 s region, indicating absence of the a rhythm 
in the segment analyzed. 

Figures 4.10, 4.1 1, and 4.12 illustrate the CCF results comparing the following 
portions of the EEG signal shown in Figure 1.22 in order: the p3 and p4 channels 
over the duration 4.72 - 5.71 s when both channels exhibit the a rhythm; the 02 and 
c4 channels over the duration 5.71 - 6.78 s when the former has the a rhythm but not 
the latter channel; and the f3 and f4 channels over the duration 4.13 - 4.96 s when 
neither channel has a activity. The relative strengths of the peaks in the a range, as 
described earlier, agree with the joint presence, singular presence, or absence of the 
a rhythm in the various segments (channels) analyzed. 
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Figure 4.9 Upper trace: ACF of the 4.2 - 4.96 s portion of the f3 channel of the EEG signal 
shown in Figure 1.22. Lower trace: The PSD of the signal segment in dB. 
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Figure 4.10 Upper trace: CCF between the 4.72 - 5.71 s portions of the p3 and p4 channels 
of the EEG signal shown in Figure 1.22. Lower trace: The CSD of the signal segments in dB, 
computed as the Pourier transform of the CCF. 
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Figure 4.11 Upper trace: CCFbetween the 5.71 - 6.78 s portions of the 02 and c4 channels 
of the EEG signal shown in Figure 1.22. Lower trace: The CSD of the signal segments in dB. 
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Figure 4.12 Upper trace: CCF between the 4.13 - 4.96 8 portions of the f3 and f4 channels 
of the EEG signal shown in Figure 1.22. Lower trace: The CSD of the signal segments in dB. 
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4.4.2 Template matchlng for EEG spike-and-wave detection 

We have already seen the use of template matching for the extraction of ECG cycles 
for use in synchronized averaging in Section 3.3.1. We shall now consider another 
application of template matching. 

Problem: Propose a method to detect spike-and-wave complexes in an EEG 
signal. You may assume that a sample segment of a spike-and-wave complex is 
available. 

Solution: A spike-and-wave complex is a well-defined event in an EEG signal. 
The complex is composed of a sharp spike followed by a wave with a frequency 
of about 3 Hz; the wave may contain a half period or a full period of an almost- 
sinusoidal pattern. One may therefore extract an epoch of a spike-and-wave complex 
from an EEG channel and use it for template matching with the same formula as in 
Equation 3.18 (see also Barlow [97]). The template may be correlated with the same 
channel from which it was extracted to detect similar events that appear at a later 
time, or with another channel to search for similar events. A simple threshold on the 
result should yield the time instants where the events appear. 

Illustration of application: The c3 channel of the EEG signal in Figure 1.23 is 
shown in the upper trace of Figure 4.13. The spike-and-wave complex between 0.60 s 
and 0.82 8 in the signal was selected for use as the template, and template matching 
was performed with the same channel signal using the formula in Equation 3.18. The 
result in the lower trace of Figure 4.13 demonstrates strong and clear peaks at each 
Occurrence of the spike-and-wave complex jn the EEG signal. The peaks in the result 
occur at the same instants of time as the corresponding spike-and-wave complexes. 

Figure 4.14 shows the f3 channel of the EEG signal in Figure 1.23, along with the 
result of template matching, using the same template that was used in the previous 
example from channel c3. The result shows that the f3 channel also has spike-and- 
wave complexes that match the template. 

4.5 CROSS-SPECTRAL TECHNIQUES 

The multiple peaks that arise in the ACF or CCF functions may cause confusion in 
the detection of rhythms; the analyst may be required to discount peaks that appear 
at integral multiples of the delay corresponding to a fundamental frequency. The 
Fourier-domain equivalents of the ACF or the CCF permit easier and more intuitive 
analysis in the frequency domain than in the time domain. The notion of rhythms 
would be easier to associate with frequencies in cps or Hz than with the corresponding 
inversely related periods (see also the introductory section of Chapter 6). 

4.5.1 Coherence analysis of EEG channels 

Problem: Describe a frequency-domain approach to study the presence of rhythms 
in multiple channels of an EEG signal. 



CROSS-SPECTRAL TECHNIQUES 201 

-1 - 

0 0.2 0.4 0.6 0.6 1 1.2 1.4 1.6 1.6 

1 

P 
E 
,o 

g! 
0.5 

d 
E o  
2 a a -0.5 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.6 
Time in seconds 

Figure 4.13 Upper trace: the c3 channel of the EEG signal shown in Figure 1.23. Lower 
trace: result of template matching. The spike-and-wave complex between 0.60 s and 0.82 8 

in the signal was used as the template. 
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Figure 4.14 Upper trace: the f3 channel of the EEG signal shown in Figure 1.23. Lower 
trace: result of template matching. The spike-and-wave complex between 0.60 s and 0.82 8 

in the c3 channel (see Figure 4.13) was used as the template. 
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Solution: The Fourier-domain equivalents of the ACF and CCF are the PSD (also 
known as the autospectrum) and the cross-spectrum (or cross-spectral density - 
CSD), respectively. The PSD S,, (f) of a signal is related to its ACF via the Fourier 
transform: 

Sza(f) = Fq?L2(7)1= X(fW*(f )  = lX(f)I2. (4.26) 

The Fourier transform of the CCF between two signals gives the CSD: 

(4.27) 

(For the sake of simplicity, the double-symbol subscripts zz and yy may be replaced 
by their singular versions, or dropped entirely when not relevant in subsequent 
discussions.) 

The PSD displays peaks at frequencies corresponding to periodic activities in the 
signal. This property facilitates the detection of rhythms in signals such as the EEG: 
the presence of the a rhythm would be indicated by a peak or multiple peaks in the 
neighborhood of 8 - 13 Hz. The PSD may also be studied to locate the presence 
of activity spread over specific bands of frequencies, such as formants in the speech 
signal or murmurs in the PCG. 

The CSD exhibits peaks at frequencies that are present in both of the signals being 
compared. The CSD may be used to detect rhythms present in common between two 
channels of the EEG. 

The normalized coherence spectrum of two signals is given by [5, 321 

(4.28) 

The phase of the coherence spectrum is given by $,,(f) = LS,,(f), which rep- 
resents the average phase difference (related to the time delay) between common 
frequency components in the two signals. 

Illustration of application: The coherence between EEG signals recorded from 
different positions on the scalp depends upon the structural connectivity or func- 
tional coupling between the corresponding parts of the brain. Investigations into the 
neurophysiology of seizure discharges and behavior attributable to disorganization 
of cerebral function may be facilitated by coherence analysis [32]. The symmetry, 
or lack thereof, between two EEG channels on the left and right sides of the same 
position (for example, c3 and c4) may be analyzed via the CSD or the coherence 
function. 

The lower traces in Figures 4.8 and 4.9 illustrate the PSDs of EEG segments with 
and without the Q rhythm, respectively. The former shows a strong and clear peak at 
about 9 Hz, indicating the presence of the Q rhythm. Observe that the PSD displays 
a single peak although the corresponding ACF has multiple peaks at two, three, and 
four times the delay corresponding to the fundamental period of the a wave in the 
signal. The PSD in Figure 4.9 exhibits no peak in the a range, indicating the absence 
of the a rhythm in the signal. 
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The lower traces in Figures 4.10,4.11, and 4.12 illustrate the CSDs corresponding 
to the CCFs in the respective upper traces. Once again, it is easier to deduce the 
common presence of strong a activity between channels p3 and p4 from the CSD 
rather than the CCF in Figure 4.10. The single peak at 9 Hz in the CSD is more 
easily interpretable than the multiple peaks in the corresponding CCF. The CSD in 
Figure 4.1 1 lacks a clear peak in the a range, even though the corresponding CCF 
shows a peak at about 0.1 8 ,  albeit less significant than that in Figure 4.10. The 
results agree with the fact that one channel has a activity while the other does not. 
Finally, the CSD in Figure 4.12 is clearly lacking a peak in the a range; the two signal 
segments have no a activity. Further methods for the analysis of a activity will be 
presented in Sections 6.4.3 and 7.5.2. 

4.6 THE MATCHED FILTER 

When a sample observation or template of a typical version of a signal event is 
available, it becomes possible to design a filter that is matched to the characteristics 
of the event. If a signal that contains repetitions of the event with almost the same 
characteristics is passed through the rnatchedfilter, the output should provide peaks 
at the time instants of occurrence of the event. Matched filters are commonly used for 
the detection of signals of known characteristics that are buried in noise [105, 1061. 
They are designed to perform a correlation between the input signal and the signal 
template, and hence are also known as correlation$lters. 

4.6.1 Detection of EEG spike-and-wave complexes 

Problem: Design a matched$lter to detect spike-and-wave complexes in an EEG 
signal. A reference spike-and-wave complex is available. 

Solution: Let z ( t )  be the given reference signal, representing an ideal observation 
of the event of interest. Let X ( f )  be the Fourier transform of z(t ) .  Consider passing 
z ( t )  through a linear time-invariant filter whose impulse response is h(t);  the transfer 
function of the filter is H ( f )  = FT[h(t)] .  The output is given by p(t) = z( t )  * h(t)  
or Y ( f )  = X(f)H(f) .  

It may be shown that the output energy is maximized when 

Wf) = K X * ( f )  exp(-j2nfto), (4.29) 

where K is a scale factor and t o  is a time instant or delay [ 1051. This corresponds to 
the impulse response being 

h(t)  = Kz(to - t). (4.30) 

Thus the transfer function of the matched filter is proportional to the complex conju- 
gate of the Fourier transform of the signal event to be detected. In the time domain, 
the impulse response is simply a reversed or rejlected version of the reference signal 
that is scaled and delayed. A suitable delay will have to be added to make the filter 
causal, as determined by the duration of the reference signal. 
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As the impulse response is a reversed version of z ( t ) ,  the convolution operation 
performed by the matched filter is equivalent to correlation: the output is then equal 
to the cross-correlation between the input and the reference signal. When a portion 
of an input signal that is different from z ( t )  matches the reference signal, the output 
approximates the ACF &, of the reference signal at the corresponding time delay. 
The corresponding frequency domain result is 

(4.3 1) 

which is the PSD of the reference signal (ignoring the time delay and scale fac- 
tors). The output is therefore maximum at the time instant of occurrence of an 
approximation to the reference signal. (See also Barlow 1971.) 

Illustration of application: To facilitate comparison with template matching, 
the spike-and-wave complex between 0.60 s and 0.82 s in the c3 channel of the 
EEG in Figure 1.23 was used as the reference signal to derive the matched filter. 
Figure 4.15 shows the extracted reference signal in the upper trace. The lower trace 
in the same figure shows the impulse response of the matched filter, which is simply 
a time-reversed version of the reference signal. The matched filter was implemented 
as an FIR filter using the MATLABjlter command. 

Figures 4.16 and 4.17 show the outputs of the matched filter applied to the c3 and 
f3 channels of the EEG in Figure 1.23, respectively. The upper trace in each plot 
shows the signal, and the lower trace shows the matched-filter output. It is evident 
that the matched filter provides a large output for each spike-and-wave complex. 
Comparing the matched-filter outputs in Figures 4.16 and 4.17 with those of template 
matching in Figure 4.13 and 4.14, respectively, we observe that they are similar, with 
the exception that the matched-filter results peak with a delay of 0.22 s after the 
corresponding spike-and-wave complex. The delay corresponds to the duration of 
the impulse response of the filter. (Note: MATLAB provides the commandjlrjlt for 
zero-phase forward and reverse digital filtering; this method is not considered in the 
book.) 

4.7 DETECTION OF THE P WAVE 

Detection of the P wave is difficult, as it is small, has an ill-defined and variable 
shape, and could be placed in a background of noise of varying size and origin. 

Problem: Propose an algorithm to detect the P wave in the ECG signal. 
Solution 1: In the method proposed by Hengeveld and van Bemmel [107], VCG 

1. The QRS is detected, deleted, and replaced with the base-line. The base-line 

2. The resulting signal is bandpass filtered with -3 dB points at 3 H z  and 11 Hz. 

3. A search interval is defined as QT,, = i R R  + 250 ms, where RR is the 

signals are processed as follows: 

is determined by analyzing a few samples preceding the QRS complex. 

interval between two successive QRS complexes. 
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Figure 4.15 Upper trace: The spike-and-wave complex between 0.60 8 and 0.82 s in the 
c3 channel of the EEG signal shown in Figure 1.23. Lower trace: Impulse response of the 
matched filter derived from the signal segment in the upper trace. Observe that the latter is a 
time-reversed version of the former. 
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Figure 4.16 Upper trace: The c3 channel of the EEG signal shown in Figure 1.23, used as 
input to the matched filter in Figure 4.15. Lower trace: Output of the matched filter. See also 
Figure 4.13. 
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Figure 4.17 Upper trace: The f3 channel of the EEG signal shown in Figure 1.23, used as 
input to the matched filter in Figure 4.15. Lower trace: Output of the matched filter. See also 
Figure 4.14. 
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4. The maximum and minimum values are found in all three VCG leads from the 
end of the preceding T wave to the onset of the QRS. 

5. The signal is rectified and thresholded at 50% and 75% of the maximum to 
obtain a ternary (three-level) signal. 

6 .  The cross-correlation of the result is computed with a ternary template derived 
in a manner similar to the procedure in the previous step from a representative 
set of P waves. 

7. The peak in the cross-correlation corresponds to the P location in the original 

The algorithm overcomes the dominance of the QRS complex by first detecting 
the QRS and then deleting it. Observe that the cross-correlation is computed not 
with an original P wave, which we have noted could be rather obscure and variable, 
but with a ternary wave derived from the P wave. The ternary wave represents a 
simplified template of the P wave. 

Figure 4.18 illustrates the results of the various stages of the P-finding algorithm 
of Hengeveld and van Bemmel [ 1071. Observe that the original ECG signal shown in 
part (a) of the figure has a P wave that is hardly discernible. The processed versions 
of the signal after deleting the QRS, filtering, and rectification are shown in parts (b), 
(c), and (d). The ternary version in part (e) shows that the P wave has been converted 
into two pulses corresponding to its upstroke and return parts. The result of cross- 
correlation with the template in part (f) is shown in part (g). A simple peak-picking 
algorithm with search limits may be used to detect the peak in the result, and hence 
determine the P wave position. 

Note that the result in part (d) has other waves preceding those related to the P 
wave. An appropriate search interval should be used so as to disregard the unwanted 
components. 

Solution 2: Gritzali et al. [ 1081 proposed a common approach to detect the QRS, T, 
and P waves in multichannel ECG signals based upon a transformation they labeled as 
the “length” transformation. Given a collection of ECG signals from N simultaneous 
channels z:l(t), zz(t),  . . . , z ~ ( t ) ,  the length transformation was defined as 

ECG. 

(4.32) 

where w is the width of the time window over which the integration is performed. In 
essence, the procedure computes the total squared derivative of the signals across the 
various channels available, and integrates the summed quantity over a moving time 
window. The advantage of applying the derivative-based operator across multiple 
channels of an ECG signal is that the P and T waves may be well-defined in at least 
one channel. 

In the procedure for waveform detection proposed by Gritzali et al., the QRS is 
first detected by applying a threshold to L(N,  w ,  t ) ,  with w set equal to the average 
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Figure 4.18 Illustration of the results at various stages of the Hengeveld and van Bemmel 
method for P wave detection. From top to bottom: (a) the original ECG signal; (b) after 
replacement of the QRS with the base-line; (c) after bandpass filtering; (d) after rectification, 
with the dashed lines indicating the thresholds; (e) the thresholded ternary signal; (f) the 
ternary P wave template; and (g) result of cross-correlation between the signals in (e) and (0. 
Reproduced with permission from S.J. Hengeveld and J.H. van Bemmel, Computer detection 
of P waves, Computers and Biomedical Research, 9:125-132, 1976. @Academic Press. 
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QRS width. The onset and offset (end) points of the QRS are represented by a pulse 
waveform, as indicated in Figure 4.19. The QRS complexes in the signals are then 
replaced by the iso-electric base-line of the signals, the procedure is repeated with 
w set equal to the average T duration, and the T waves are detected. The same 
steps are repeated to detect the P waves. Figure 4.19 illustrates the detection of the 
QRS, T, and P waves in a three-channel ECG signal. Gritzali et al. also proposed a 
procedure based upon correlation analysis and least-squares modeling to determine 
the thresholds required, which will not be described here. 
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Figure 4.19 Detection of the P, QRS, and T waves in a three-channel ECG signal using the 
length transformation. The lower three traces show the three ECG channels. The upper three 
traces indicate the onset and end of the P, QRS, and T waves detected by the procedure in the 
form of pulse trains. The first P and the last T waves have not been processed. Reproduced 
with permission from F. Gritzali, G. Frangakis, G. Papakonstantinou, Detection of the P and T 
waves in an ECG, Computers and Biomedical Research, 22:83-91, 1989. @Academic Press. 
See Willems et al. [ 109, 1 101 for details on the ECG database used by Gritzali et al. 
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4.8 HOMOMORPHIC FILTERING AND THE COMPLEX CEPSTRUM 

In Chapter 3, we have seen linear filters designed to separate signals that were 
added together. The question asked has been, given ~ ( t )  = z ( t )  + q( t ) ,  how 
could one extract z ( t )  only. Given that the Fourier transform is linear, we know 
that the Fourier transforms of the signals are also combined in an additive manner: 
Y ( w )  = X ( w )  +v(w) .  Therefore, a linear filter will facilitate the separation of X ( w )  
and ~ ( w ) ,  with the assumption that they have significant portions of their energies in 
different frequency bands. 

Suppose now that we are presented with a signal that contains the product of two 
signals, say, ~ ( t )  = z ( t )  p ( t ) .  From the multiplication or convolution property of the 
Fourier transform we have Y ( w )  = X ( w )  * P(w),  where * represents convolution in 
the frequency domain. How would we be able to separate z ( t )  from p ( t ) ?  

Furthermore, suppose we have ~ ( t )  = z ( t )  * h( t ) ,  where * stands for convolution 
as in the case of the passage of the glottal pulse train or random excitation z ( t )  through 
the vocal-tract system with the impulse response h( t ) .  The Fourier transforms of the 
signals are related as Y(w)  = X ( w )  H ( w ) .  How would we attempt to separate z(t )  
and h(t)? 

4.8.1 Generalized linear filtering 

Given that linear filters are well established and understood, it is attractive to con- 
sider extending their application to signals that have been combined by operations 
other than addition, especially by multiplication and convolution as indicated in the 
preceding paragraphs. An interesting possibility to achieve this is via conversion of 
the operation combining the signals into addition by one or more transformations. 
Under the assumption that the transformed signals occupy different portions of the 
transform space, linear filters may be applied to separate them. The inverses of the 
transformations used initially would then take us back to the original space of the 
signals. This approach was proposed in a series of papers by Bogert et al. [ 11 11 
and Oppenheim et al. [ 1 12, 1 131. As the procedure extends the application of linear 
filters to multiplied and convolved signals, it has been referred to as generalized 
linearjltering. Furthermore, as the operations can be represented by algebraically 
linear transformations between the input and output vector spaces, they have been 
called homomorphic systems. 

As a simple illustration of a homomorphic system for multiplied signals, consider 
again the signal 

V ( t )  = Z ( t ) P ( t ) .  (4.33) 

Given the goal of converting the multiplication operation to addition, it is evident 
that a simple logarithmic transformation is appropriate: 
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The logarithms of the two signals are now combined in an additive manner. Taking 
the Fourier transform, we get 

X ( w )  = Xr(w)  + S ( w ) ,  (4.35) 

where the subscript 1 indicates that the Fourier transform has been applied to a 
log-transformed version of the signal. 

Assuming that the logarithmic transformation has not affected the separability of 
the Fourier components of the two signals m ( t )  and p ( t ) ,  a linear filter (lowpass, 
highpass, etc.) may now be applied to X ( w )  to separate them. An inverse Fourier 
transform will yield the filtered signal in the time domain. An exponential operation 
will complete the reversal procedure (if required). 

Figure 4.20 illustrates the operations involved in a multiplicative homomorphic 
system (or filter). The symbol at the input or output of each block indicates the 
operation that combines the signal components at the corresponding step. A system 
of this type is useful in image processing, where an image may be treated as the 
product of an illumination function and a transmittance or reflectance function. The 
homomorphic filter facilitates separation of the illumination function and correction 
for nonuniform lighting. The method has been used to achieve simultaneous dynamic 
range compression and contrast enhancement [86, 114, 1121. 

4.8.2 Homomorphic deconvolution 

Problem: Propose a homomorphic filter to separate two signals that have been 
combined through the convolution operation. 

Solution: Consider the case expressed by the relation 

y ( t )  = z ( t )  * h(t) .  (4.36) 

As in the case of the multiplicative homomorphic system, our goal is to convert 
the convolution operation to addition. From the convolution property of the Fourier 
transform, we know that 

Thus application of the Fourier transform converts convolution to multiplication. 
Now, it is readily seen that the multiplicative homomorphic system may be applied 
to convert the multiplication to addition. Taking the complex logarithm of Y ( w ) ,  we 
have 

Y ( w )  = X ( w )  H(w) .  (4.37) 



7 

Linear - + Inverse + Exponential X Logarithmic +_ Fourier 2 
transform transform filter Fourier - transform 

Input -transf orm 

u 
2 

X . * m 
Filtered 3 

* X + Logarithmic Inverse 
* Fourier + Fourier 

Input trans f orm trans f orm 
transform 

Figure 4.21 Operations involved in a homomorphic filter for convolved signals. The symbol at the input or output of each block indicates the 
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Figure 4.22 Detailed block diagram of the steps involved in &convolution of signals using the complex cepstrum. 
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A linear filter may now be used to separate the transformed components of o and 
h, with the assumption as before that they are separable in the transform space. A 
series of the inverses of the transformations applied initially will take us back to the 
original domain. 

While the discussion here has been in terms of application of the Fourier transform, 
the general formulation of the homomorphic filter by Oppenheim and Schafer [86] 
is in terms of the t-transform. However, the Fourier transform is equivalent to the 
z-transform evaluated on the unit circle in the z-plane, and the Fourier transform is 
more commonly used in signal processing than the z-transform. 

Figure 4.21 gives a block diagram of the steps involved in a homomorphic filter 
for convolved signals. Observe that the path formed by the first three blocks (the top 
row) transforms the convolution operation at the input to addition. The set of the 
last three blocks (the bottom row) performs the reverse transformation, converting 
addition to convolution. The filter in between thus deals with (transformed) signals 
that are combined by simple addition. 

4.8.3 Extraction of the vocal-tract response 

Problem: Design a homomorphic filter to extract the basic wavelet corresponding 
to the vocal-tract response from a voiced-speech signal. 

Solution: We noted in Section 1.2.1 1 that voiced speech is generated by excitation 
of the vocal tract, as it is held in a particular form, with a glottal waveform that may 
be approximated as a series of pulses. The voiced-speech signal may therefore be 
expressed in discrete-time terms as y(n) = s(n) * h(n) ,  where y(n) is the speech 
signal, z(n)  is the glottal waveform (excitation sequence), and h(n)  is the impulse 
response of the vocal tract (basic wavelet). The * symbol represents convolution, 
with the assumption that the vocal-tract filter may be approximated by a linear, shift- 
invariant filter. We may therefore use the homomorphic filter for convolved signals 
as introduced in the preceding section to separate h(n) and e(n).  

The glottal excitation sequence may be further expressed as e(n) = p ( n )  * 
g(n), where p(n) is a train of ideal impulses (Dirac delta functions) and g(n)  is a 
smoothing function, to indicate that the physical vocal-cord system cannot produce 
ideal impulses but rather pulses of finite duration and slope [86]. This aspect will be 
neglected in our discussions. 

Practical application of the homomorphic filter is not simple. Figure 4.22 gives 
a detailed block diagram of the procedure [86, 1151. Some of the finer details and 
practical techniques are explained in the following paragraphs. 

The complex cepstrum: The formal definition of the complex cepstrum states 
that it is the inverse z-transform of the complex logarithm of the z-transform of 
the input signal [115, 861. (The name “cepstrum” was derived by transposing the 
syllables of the word “spectrum”; other transposed terms [ 1 1 1, 86, 1 151 are less 
commonly used.) If y(n) is the input signal and Y (z) is its z-transform, the complex 
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cepstrum $(n) is defined as 

$(n)  = - / log[Y(z)] z"-l dz. 
2n j 

(4.39) 

The contour integral performs the inverse %-transform, and should be evaluated within 
an annular region in the complex z-plane where Y ( z )  = log[Y(z)] is single-valued 
and analytic [86, 21. The unit of n in $(TI), that is, in the cepstral domain, is often 
referred to as quefrency, a term obtained by switching the syllables in the term 
frequency. 

Given y(n) = z(n) * h(n), it follows that 

Y ( z )  = X ( z )  + r i ( z )  or Y ( w )  = X ( w )  + f i ( w ) ,  (4.40) 

and further that the complex cepstra of the signals are related simply as 

g(n) = o(n) + k(n). (4.41) 

Here, the A symbol over a function of z or w indicates the complex logarithm of 
the corresponding function of z or w, whereas the same symbol over a function 
of time (n) indicates the complex cepstrum of the corresponding signal. It should 
be noted that if the original signal y(n) is real, its complex cepstrum $(n) is real; 
the prefix complex is used to indicate the fact that the preceding z and logarithmic 
transformations are computed as complex functions. Furthermore, it should be noted 
that the complex cepstrum is a function of time. 

An important consideration in the evaluation of the complex logarithm of Y ( z )  
or Y ( w )  relates to the phase of the signal. The phase spectrum computed as its 
principal value in the range 0 - 2n, given by tan- [ -1, will almost 
always have discontinuities that will conflict with the requirements of the inverse 
%-transformation or inverse Fourier transform to follow later. Thus Y ( w )  needs to 
be separated into its magnitude and phase components, the logarithmic operation 
applied to the magnitude, the phase corrected to be continuous by adding correction 
factors of f 2 n  at discontinuities larger than IF, and the two components combined 
again before the subsequent inverse transformation. Correcting the phase spectrum 
as above is referred to as phase unwrapping [115,86]. It has been shown that a linear 
phase term, if present in the spectrum of the input signal, may cause rapidly decaying 
oscillations in the complex cepstrum [ 1151. It is advisable to remove the linear phase 
term, if present, during the phase-unwrapping step. The linear phase term may be 
added to the filtered result (as a time shift) if necessary. 

Exponential signals are defined as signals that have a rational %-transform, that is, 
their %-transforms may be expressed as ratios of polynomials in 2. Such signals are 
effectively represented as weighted sums of exponentials. A few important properties 
of the complex cepstrum of an exponential signal are summarized below [86]. 

1 ima inary Y w 

0 g(n) will be of infinite duration even if ~ ( n )  is of finite duration, and exists for 
--oo < n < 00 in general. 
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0 The complex cepstrum $(n)  decays at least as fast as t. 
0 If y(n) is a minimum-phase signal (that is, it has all of its poles or zeros inside 

the unit circle in the z-plane), then $(n) = 0 for n < 0. 

0 If ~ ( n )  is a maximum-phase signal (that is, it has no poles or zeros inside the 
unit circle in the z-plane), then $(n) = 0 for n > 0. 

Limiting ourselves to causal signals of finite energy, we need not consider the 
presence of poles on or outside the unit circle in the z-plane. However, the z-transform 
of a finite-energy signal may have zeros outside the unit circle. Such a composite 
signal may be separated into its minimum-phase component and maximum-phase 
component by extracting the causal part (n > 0) and anti-causal part (n < 0), 
respectively, of its complex cepstrum, followed by the inverse procedures. The 
composite signal is equal to the convolution of its minimum-phase component and 
maximum-phase component. (See also Section 5.4.2.) 

Effect of echoes or repetitions of a wavelet: Let us consider a simplified signal 
~ ( n )  = z(n) * h(n), where 

z(n)  = 6(n) + a6(n - no), (4.42) 

with a and no being two constants. (The sampling interval T is ignored, or assumed 
to be normalized to unity in this example.) The signal may also be expressed as 

g(n) = h(n) + ah(n - no). (4.43) 

The signal thus has two Occurrences of the basic wavelet h(n) at n = 0 and n = no. 
The coefficient a indicates the magnitude of the second appearance of the basic 
wavelet (called an echo in seismic applications), and no indicates its delay (pitch 
in the case of a voiced-speech signal). The top-most plot in Figure 4.23 shows a 
synthesized signal with a wavelet and an echo at half the amplitude (that is, a = 0.5) 
of the first wavelet arriving at no = 0.01125 8 .  

Taking the z-transform of the signal, we have 

Y ( z )  = (1 + az-"")H(z). (4.44) 

If the s-transform is evaluated on the unit circle, we get the Fourier-transform-based 
expression 

(4.45) 

Taking the logarithm, we have 

Y(w)  = [l + a  exp(-jwno)]H(w). 

P ( w )  = &(w) + Iog[l+ a exp(-jwno)]. 

If a < 1, the log term may be expanded in a power series, to get 

P(w)  = &(w) + a exp(-jwno) - - exp(-2jwno) + - exp(-3jwno) - * - .  . 
(4.47) 

(4.46) 

a' a8 
2 3 
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Figure 4.23 From top to bottom: a composite signal with a wavelet and an echo; the complex 
cepstrum of the signal (the amplitude axis has been stretched to make the peaks at the echo 
time and its multiples more readily visible; values outside the range f1.5 have been clipped); 
the basic wavelet extracted by shortpass filtering the cepstrum; and the excitation sequence 
extracted by longpass filtering the cepstrum. 



Taking the inverse Fourier transform, we get 
a’ a3 
2 

g(n) = h(n) + aS(n - no) - - S(n - 2no) + 7 6(n - 3no) - * * . (4.48) 

The derivation above shows that the complex cepstrum of a signal with a basic 
wavelet and an echo is equal to the complex cepstrum of the basic wavelet plus a 
series of impulses at the echo delay and integral multiples thereof [115, 861. The 
amplitudes of the impulses are proportional to the echo amplitude (the factor a) and 
decay for the higher-order repetitions (if a < 1). It may be readily seen that if 
the signal has multiple echoes or repetitions of a basic wavelet, the cepstrum will 
possess multiple impulse trains, with an impulse at the arrival time of each wavelet 
and integral multiples thereof. In the case of a voiced-speech signal, the location of 
the first peak will give the pitch. The second plot in Figure 4.23 shows the complex 
cepstrum of the signal in the first plot of the same figure. It is seen that the cepstrum 
has a peak at 0.01125 s, the echo amval time; a smaller (negative) peak is also seen 
at twice the echo arrival time. 

Under the assumption that the complex cepstrum of the basic wavelet decays 
to negligible values before the first impulse a S ( n  - no) related to the echo, h(n) 
may be extracted from the complex cepstrum g(n) of the composite signal by a 
simple window that has unit value for In( < n,, n, being the cutoff point. (This 
filter is sometimes referred to as a “shortpass” filter as the cepstrum is a function 
of time; it might also be called a lowpass filter.) The inverse procedures will yield 
h(n).  The remaining portion of the cepstrum (obtained by “longpass” or highpass 
filtering) will give 2(n),  which upon application of the inverse procedures will yield 
s(n) .  The third and fourth plots in Figure 4.23 show the basic wavelet h(n) and the 
excitation sequence z(n)  extracted by filtering the cepstrum with the cutoff point at 
n, = 0.005 s. 

In the case where a >_ 1, it can be shown that the complex cepstrum will have 
a train of impulses on its negative time axis, that is, at (n + kno), k = 1,2,. . . 
[ 115, 861. An appropriate exponential weighting sequence may be used to achieve 
the condition a < 1, in which case the impulse train will appear on the positive axis 
of the cepstrum. If the weighted signal satisfies the minimum-phase condition, the 
cepstrum will be causal. 

The power cepstrum: Several variants of the cepstrum have been proposed in 
the literature; Childers [ 1 151 provides a review’of the related techniques. One variant 
that is commonly used is the real cepsrrum or thepower cepstrum, which is defined as 
the square of the inverse z-transform of the logarithm of the squared magnitude of the 
z-transform of the given signal. In practice, the z-transform in the definition stated 
is replaced by the FFT. The power cepstrum has the computational advantage of not 
requiring phase unwrapping, but does not facilitate separation of the components of 
the signal. 

By evaluating the inverse z-transform on the unit circle in the z-plane, the power 
cepstrum GP(n) of a signal g ( n )  may be defined as 

2n j (4.49) 
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If, as before, we consider y(n) = z(n) * h(n), we have IY(a)12 = I X ( Z ) ~ ~ ~ H ( Z ) ~ ~ ,  
and it follows that log lY(z)I2 = log I X ( Z ) ( ~  + log lH(z)I2.  Applying the inverse 
a-transform to this relationship, we get 

Y p ( 4  = W ) + & h 4 7  (4.50) 

where hp(n) is the power cepstrum of the basic wavelet and $p(n) is the power 
cepstrum of the excitation signal, Note that in the above equation the cross-product 
term was neglected; the cross-term will be zero if the two component power cepstra 
occupy non-overlapping quefrency ranges. The final squaring operation in Equa- 
tion 4.49 is omitted in some definitions of the power cepstrum; in such a case, the 
cross-term does not arise, and Equation 4.50 is valid. 

The power cepstrum does not retain the phase information of the original signal. 
However, it is useful in the identification of the presence of echoes in the signal, and 
in the estimation of their arrival times. The power cepstrum is related to the complex 
cepstrum as [ 1 151 

(4.5 1) 

Let us again consider the situation of a signal with two occurrences of a basic 

$ p W  = [fib) + O(-n)l2. 

wavelet h(n) and n = 0 and n = no as in Equations 4.42 and 4.43. Then [115], 

I Y ( Z ) ~ ~  = lH(z)1211 + az-"0l2. (4.52) 

By taking the logarithm of both sides of the equation and substituting z = exp(jw), 
we get 

log ly(w)12 = log I H ( u ) ( ~  + log[l+ u2 + 2 a  cos(wno)] 

= log l ~ ( w ) l ~  + log(l+ a') 

(4.53) 

It is now seen that the logarithm of the PSD of the signal will have sinusoidal 
components (ripples) due to the presence of an echo. The amplitudes and frequencies 
of the ripples are related to the amplitude a of the echo and its time delay no. 

Illustration of application: A voiced-speech signal y ( n )  is the result of convo- 
lution of a slowly varying vocal-tract response h(n) with a relatively fast-varying 
glottal pulse train z(n): y ( n )  = z(n) * h(n).  Under these conditions, it may be 
demonstrated that the contributions of h(n) to the complex cepstrum $(n) will be 
limited to low values of n within the range of the pitch period of the speech signal 
[86] .  The complex cepstrum $(n) will possess impulses at the pitch period and 
integral multiples thereof. Therefore, a filter that selects a portion of the complex 
cepstrum for low values of n, followed by the inverse transformations, will yield an 
estimate of h(n). 

When the repetitions of the basic wavelet have magnitudes almost equal to (or 
even greater than) that of the first wavelet in the given signal record, the contributions 
of the pulse-train component to the complex cepstrum may not decay rapidly and 
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may cause aliasing artifacts when the cepstrum is computed over a finite duration. A 
similar situation is caused when the delay between the occurrences of the multiple 
versions of the basic wavelet is a significant portion of the duration of the given 
signal. The problem may be ameliorated by applying an exponential weight a" to 
the data sequence, with a < 1. Childers et al. [115] recommended values of a 
in the range 0.99 - 0.96, depending upon the signal characteristics as listed above. 
Furthermore, they recommend appending or padding zeros to the input signal to 
facilitate computation of the cepstrum to a longer duration than the signal in order to 
avoid aliasing errors and ambiguities in time-delay estimates. (See Figure 4.22 for 
an illustration of the various steps in homomorphic filtering of convolved signals.) 

Figure 4.24 illustrates a segment of a voiced-speech signal (extracted from the 
signal shown in Figure 1.30) and the basic wavelet extracted by shortpass filtering 
of its complex cepstrum with nc = 0.003125 8 .  The signal was padded with zeros 
to twice its duration; exponential weighting with a = 0.99 was used. It is seen that 
the basic vocal-tract response wavelet has been successfully extracted. Extraction of 
the vocal-tract response facilitates spectral analysis without the effect of the quasi- 
periodic repetitions in the speech signal. 

The fourth trace in Figure 4.24 shows the glottal (excitation) waveform extracted 
by longpass filtering of the cepstrum with the same parameters as in the preceding 
paragraph. The result shows impulses at the time of arrival of each wavelet in the 
composite speech signal. The peaks are decreasing in amplitude due to the use of 
exponential weighting (with a = 0.99) prior to computation of the cepstrum. Inverse 
exponential weighting can restore the pulses to their original levels; however, the 
artifact at the end of the excitation signal gets amplified to much higher levels than 
the desired pulses due to progressively higher values of a-" for large n. Hence the 
inverse weighting operation was not applied in the present illustration. Regardless, 
the result indicates that pitch information may also be recovered by homomorphic 
filtering of voiced-speech signals. 

4.9 APPLICATION: ECG RHYTHM ANALYSIS 

Problem: Describe a method to measure the heart rate and average RR interval 
from an ECG signal. 

Solution: Algorithms for QRS detection such as the Pan-Tompkins method de- 
scribed in Section 4.3.2 are useful for ECG rhythm analysis or heart-rate monitoring. 
The output of the final smoothing filter could be subjected to a peak-searching al- 
gorithm to obtain a time marker for each QRS or ECG beat. The search procedure 
proposed by Pan and Totnpkins was explained in Section 4.3.2. The intervals be- 
tween two such consecutive markers gives the RR interval, which could be averaged 
over a number of beats to obtain a good estimate of the inter-beat interval. The heart 
rate may be computed in bpm as 60 divided by the average RR interval in seconds. 
The heart rate may also be obtained by counting the number of beats detected over a 
certain period, say 10 s, and multiplying the result with the required factor (6 in the 
present case) to get the number of beats over one minute. 
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Figure 4.24 From top to bottom: a segment of a voiced-speech signal over six pitch periods 
(extracted from the signal shown in Figure 1.30 and lowpass filtered); the complex cepstrum 
of the signal (the amplitude axis has been stretched to make the peaks at the echo time 
and its multiples more readily visible; values outside the range f l . O  have been clipped); 
the (shifted) basic wavelet extracted by shortpass filtering the cepstrum; and the excitation 
sequence extracted by longpass filtering the cepstrum. 
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The upper plot in Figure 4.25 shows a filtered version of the noisy ECG signal 
shown in Figure 3.5. The noisy signal was filtered with an eighth-order Butterworth 
lowpass filter with a cutoff frequency of 90 Hz, and the signal was down-sampled 
by a factor of five to an effective sampling rate of 200 Hz. The lower plot shows the 
output of the Pan-Tompkins method. The Pan-Tompkins result was normalized by 
dividing by its maximum over the data record available (as the present example was 
computed off-line). A fixed threshold of 0.1 and a blanking interval of 250 me was 
used in a simple search procedure, which was successful in detecting all the beats in 
the signal. (The blanking interval indicates the period over which threshold checking 
is suspended once the threshold has been crossed.) The average RR interval was 
computed as 716 ms, leading to an effective heart rate of 84 bpm. 
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Figure 4.25 Results of the Pan-Tompkins algorithm. Top: lowpass-filtered version of the 
ECG signal shown in Figure 3.5. Bottom: normalized result of the final integrator. 

Results at the various stages of the Pan-Tompkins algorithm for a noisy ECG signal 
sampled at 200 Hz are shown in Figure 4.26. The bandpass filter has efficiently 
removed the low-frequency artifact in the signal. The final output has two peaks that 
are much larger than the others: one at the beginning of the signal due to filtering 
artifacts, and one at about 7.5 s due to an artifact in the signal. Furthermore, the 
output has two peaks for the beat with an artifact at 7.5 s. The simple peak-searching 
procedure as explained in the previous paragraph was applied, which resulted in the 
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detection of 46 beats: one more than the 45 present in the signal due to the artifact at 
about 7.5 8. The average RR interval was computed to be 446.6 ms, leading to an 
effective heart rate of 137 6pm. 

The illustration demonstrates the need for prefiltering the ECG signal to remove 
artifacts and the need to apply an adaptive threshold to the output of the Pan-Tompkins 
algorithm for QRS detection. It is readily seen that direct thresholding of the original 
ECG signal will not be successful in detecting all of the QRS complexes in the signal. 
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Figure 4.26 Results of the Pan-Tompkins algorithm with a noisy ECG signal. From top to 
bottom: ECG signal sampled at 200 Hz; output of the bandpass filter (BPF); output of the 
derivative-based operator; the result of squaring; and normalized result of the final integrator. 

4.10 APPLICATION: IDENTIFICATION OF HEART SOUNDS 

Problem: Outline a signal processing algorithm to identify S1 and S2 in a PCG 
signal, and further segment the PCG signal into its systolic and diastolic parts. The 
ECG and carotid pulse signals are available for reference. 

Solution: We saw in Section 2.3 how the ECG and carotid pulse signals could be 
used to demarcate the onset of S1 and S2 in the PCG; the procedure, however, was not 
based upon signal processing but upon visual analysis of the signals. We have, in the 
present chapter, developed signal processing techniques to detect the QRS complex 
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in the ECG and the dicrotic notch in the carotid pulse signal. We may therefore use 
these methods to transfer the timing information from the ECG and carotid pulse 
signals to the PCG signal. In order to perform this task, we need to recognize a few 
timing relationships between the signals [41,66]. 

The beginning of S 1 may be taken to be the same instant as the beginning of the 
QRS. The QRS itself may be detected using one of the three methods described in 
the present chapter, such as the Pan-Tompkins method. 

Detection of the beginning of S2 is more involved. Let the heart rate be H R  bpm. 
The pre-ejection period PEP is defined as the interval from the beginning of the 
QRS to the onset of the corresponding carotid upstroke. The rate-corrected PEP 
is defined as PEPC = PEP + 0.4HR, with the periods in ms. PEPC is in the 
range of 131 f 13 ms for normal adults [41]. 

The ejection time ET is the interval from the onset of the carotid upstroke to the 
dicrotic notch. The rate-corrected ejection time in ms is ETC = ET + 1.6HR, and 
is in the ranges of 395 f 13 ms for normal adult males and 415 f 11 ms for normal 
adult females. 

Using PEPC,,, = 144 ms and HR,i, = 60 bpm, we get PEP,, = 120 me. 
With HRmi, = 60 bpm and ETC,, = 425 me, we get ET,, = 325 ms. With 
these parameters, the maximum interval between the QRS and the dicrotic notch is 
380 ms. The procedure proposed by Lehner and Rangayyan [66] for detection of 
the dicrotic notch recommends searching the output of the derivative-based method 
described in Section 4.3.3 in a 500 ms interval after the QRS. After the dicrotic notch 
is detected, we need to subtract the time delay between the beginning of S2 and D 
to get the time instant where S2 begins. Lehner and Rangayyan 1661 measured the 
average S2 - D delay over the PCG and carotid pulse signals of 60 patients to be 
42.6 ms, with a standard deviation of 5.0 ms. 

The following procedure may be used to segment a PCG signal into its systolic 
and diastolic parts. 

1. Use the Pan-Tompkins method described in Section 4.3.2 to locate the QRS 
complexes in the ECG. 

2. Identify one period of the PCG as the interval between two successive QRS 
locations. Note that any delay introduced by the filters used in the Pan- 
Tompkins method needs to be subtracted from the detected peak locations to 
obtain the starting points of the QRS complexes. 

3. Use the Lehner and Rangayyan method described in Section 4.3.3 to detect the 
dicrotic notch in the carotid pulse signal. 

4. Let the standardized S2 - D delay be the mean plus two standard deviation 
values as reported by Lehner and Rangayyan [66], that is, 52.6 me. Subtract 
the standardized S2 - D delay from the detected dicrotic notch location to 
obtain the onset of S2. 

5.  The S1 - S2 interval gives the systolic part of the PCG cycle. 
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6. The interval between the S2 point and the next detected S 1 gives the diastolic 
part of the PCG cycle. 

Figures 4.27 and 4.28 illustrate the results of application of the procedure de- 
scribed above to the PCG, ECG, and carotid pulse signals of a normal subject and a 
patient with a split S2, systolic ejection murmur, and opening snap of the mitral valve. 
(Clinical diagnosis indicated the possibility of ventricular septa1 defect, pulmonary 
stenosis, or pulmonary hypertension for the 14-month-old female patient with mur- 
mur.) The peak positions detected in the output of the Pan-Tompkins method (the 
third trace in each figure) and the output of the Lehner and Rangayyan method (the 
fifth trace) have been marked with the * symbol. A simple threshold of 0.75 times 
the maximum value was used as the threshold to detect the peaks in the output of the 
Pan-Tompkins method, with a blanking interval of 250 ms. 

The QRS and D positions have been marked on the ECG and carotid pulse traces 
with the triangle and diamond symbols, respectively. Finally, the S 1 and S2 positions 
are marked on the PCG trace with triangles and diamonds, respectively. The filter 
delays and timing relationships between the three channels of signals described 
previously have been accounted for in the process of marking the events. Note 
how the results of event detection in the ECG and carotid pulse signals have been 
transferred to locate the corresponding events in the PCG. Lehner and Rangayyan [66] 
used a similar procedure to break PCG signals into systolic and diastolic segments; 
the segments were then analyzed separately in the time and frequency domains. (See 
also Sections 6.4.5 and 7.9.) 

4.1 1 APPLICATION: DETECTION OF THE AORTIC COMPONENT OF 
THE SECOND HEART SOUND 

Heart sounds are preferentially transmitted to different locations on the chest. The 
aortic and pulmonary components A2 and P2 of S2 are best heard at the aortic area (to 
the right of the sternum, in the second right-intercostal space) and the pulmonary area 
(left parasternal line in the third left-intercostal space), respectively (see Figure 1.17). 
A2 is caused by the closure of the aortic valve at the end of systole, and is usually 
louder than P2 at all locations on the chest. Earlier theories on the genesis of heart 
sounds attributed the sounds to the opening and closing actions of the valve leaflets 
per se. The more commonly accepted theory at the present time is that described by 
Rushmer [23]; see Section 1.2.8. 

The relative timing of A2 and P2 depends upon the pressure differences across 
the corresponding valves in  the left and right ventricular circulatory systems. In a 
normal individual, the timing of P2 with reference to A2 varies with respiration; 
the timing of A2 itself is independent of respiration. The pulmonary pressure (in- 
trathoracic pressure) is decreased during inspiration, leading to a delayed closure of 
the pulmonary valve and hence an increased (audible and visible) gap between A2 
and P2 [23, 41, 421. The gap is closed and A2 and P2 overlap during expiration 
in normal individuals. A2 and P2 have individual durations of about 50 ms. The 
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Figure 4.27 Results of segmentation of a PCG signal into systolic and diastolic parts using the 
ECG and carotid pulse signals for reference. From top to bottom: the PCG signal of a normal 
subject (male subject, 23 years); the ECG signal; y(n), the output of the Pan-Tompkins method 
for detection of the QRS after normalization to the range (0 , l ) ;  the carotid pulse signal; s (n) ,  
the output of the Lehner and Rangayyan method for detection of the dicrotic notch, normalized 
to the range (0 , l ) .  The peaks detected in the outputs of the two methods have been identified 
with * marks. The QRS and D positions have been marked with the triangle and diamond 
symbols, respectively. The Sl and S2 positions are marked on the FCG trace with triangles 
and diamonds, respectively. The last cardiac cycle was not processed. 
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Figure4.28 Results of segmentation of a PCG signal into systolic and diastolic parts using the 
ECG and carotid pulse signals for reference. From top to bottom: the PCG signal of a patient 
with a split S2, systolic ejection murmur, and opening snap of the mitral valve (female patient, 
14 months); the ECG signal; y(n), the output of the Pan-Tompkins method for detection of 
the QRS; the carotid pulse signal; s(n) ,  the output of the Lehner and Rangayyan method for 
detection of the dicrotic notch. The peaks detected in the outputs of the two methods have 
been identified with * marks. The QRS and D positions have been marked with the triangle 
and diamond symbols, respectively. The S1 and S2 positions are marked on the PCG trace 
with triangles and diamonds, respectively. 
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normal inspiratory gap between A2 and P2 is of the order of 30 - 40 me, although 
splits as long as 100 me have been recorded [41]. 

A split in S2 longer than 40 ms during sustained expiration is considered to be 
abnormal [41]. Complete right bundle-branch block could cause delayed activation 
of the right ventricle, therefore delayed pulmonary valve closure, a delayed P2, and 
hence a widely split S2. Some of the other conditions that cause a wide split in S2 are 
atrial septal defect, ventricular septal defect, and pulmonary stenosis. Left bundle- 
branch block leads to delayed left-ventricular contraction and aortic valve closure 
(with reference to the right ventricle and the pulmonary valve), causing A2 to appear 
after P2, and reversed splitting of the two components. Some of the other conditions 
that could cause reversed splitting of S2 are aortic insufficiency and abnormally early 
pulmonary valve closure. It is thus seen that identification of A2 and P2 and their 
temporal relationships could assist in the diagnosis of several cardiovascular defects 
and diseases. 

MacCanon et al. [ 1 161 conducted experiments on a dog for direct detection and 
timing of aortic valve closure. They developed a catheter with an electrical contacting 
device that could be placed at the aortic valve to detect the exact moment of closure of 
the aortic valve. They also measured the aortic pressure and the PCG at the third left- 
intercostal space. It was demonstrated that the aortic valve closes at least 5 - 13 ms 
before the incisura appears in the aortic pressure wave (see Figure 1.27 and 1.28 
for illustrations of the aortic pressure waves recorded from a dog). The conclusion 
reached was that S2 is caused not by the collision of the valve leaflets themselves, 
but due to the rebound of the aortic blood column and walls after valve closure. 
MacCanon et al. also hypothesized that the relative high-frequency characteristics of 
the incisura and S2 result from elastic recoil of the aortic wall and valve in reaction 
to the distention by the rebounding aortic blood column. 

Stein et al. [117, 1181 conducted experiments in which intracardiac and intra- 
arterial sounds were recorded and analyzed. Their experiments indicated that S2 
begins after the aortic valve closes. They argued that the intensity of S2 depends 
upon, among other factors, the distensibility of the aortic and pulmonary valves; 
hemodynamic factors that cause the valves to distend and vibrate; viscosity of the 
blood and its ability to inhibit diastolic valve motion; and the configuration of the 
aorta, the pulmonary artery, and the ventricles. It was demonstrated that the pul- 
monary valve, due to its larger surface area than that of the aortic valve, is more 
distensible and hence produces a larger sound than the aortic valve even for the same 
pressure gradient across the valve. In the case of pulmonary hypertension, it was 
argued that the pulmonary valve would distend further at a higher speed: the rate 
of development of the diastolic pressure gradient across the closed pulmonary valve 
would be higher than in normal cases. 

Problem: Given that the second heart sound S2 is made up of an aortic component 
A2 and a pulmonary component P2 with variable temporal relationships, propose a 
method to detect only A2. 

Solution: We have seen in the preceding section how the dicrotic notch in the 
carotid pulse signal may be used to detect the beginning of S2. The technique is 
based upon the direct relationship between aortic valve closure and the aortic incisura, 



REMARKS 231 

and consequently the dicrotic notch, as explained above. Now, if we were to detect 
and segment S2 over several cardiac cycles and several respiratory cycles, we could 
perform synchronized averaging of S2. A2 should appear at the same instant in every 
S2 segment, and should be strengthened by the synchronized averaging process. P2, 
on the other hand, would appear at different times, and should be cancelled out 
(suppressed) by the averaging process. 

Figure 4.29 shows segments of duration 300 rns containing S2 segmented from 
nine successive cardiac cycles of the PCG of a patient with atrial septa1 defect. The 
PCG signal was segmented using the ECG and carotid pulse signals for reference in 
a method similar to that illustrated in Figures 4.27 and 4.28. The PCG signal was 
recorded at the second left-intercostal space, which is closer to the pulmonary area 
than to the aortic area. The nine S2 segments clearly show the fixed timing of A2 
and the variable timing of P2. The last plot is the average of S2 segments extracted 
from 21 successive cardiac cycles. The averaged signal displays A2 very well, while 
P2 has been suppressed. 

The detection of A2 would perhaps have been better, had the PCG been recorded 
at the aortic area, where A2 would be stronger than P2. Once A2 is detected, it could 
be subtracted from each S2 record to obtain individual estimates of P2. Sarkady et 
al. [ 1191, Baranek et al. [ 1201, and Durand et al. [ 1211 proposed averaging techniques 
as above with or without envelope detection (but without the use of the carotid pulse); 
the methods were called aligned ensemble averaging to detect wavelets or coherent 
detection and averaging. 

4.12 REMARKS 

We have now established links between the characteristics of certain epochs in a 
number of biomedical signals and the corresponding physiological or pathological 
events in the biomedical systems of concern. We have seen how derivative-based 
operators may be applied to detect QRS complexes in the ECG signal as well as 
the dicrotic notch in the carotid pulse signal. The utility of correlation and spectral 
density functions in the detection of rhythms and events in EEG signals was also 
demonstrated. We have studied how signals with repetitions of a certain event or 
wavelet, such as a voiced-speech signal, may be analyzed using the complex cepstrum 
and homomorphic filtering. Finally, we also saw how events detected in one signal 
may be used to locate the corresponding events in another signal: the task of detecting 
S 1 and S2 in the PCG was made simpler by using the ECG and carotid pulse signals, 
where the QRS and D waves can be detected more readily than the heart sounds 
themselves. 

Event detection is an important step that is required before we may attempt to 
analyze the corresponding waves or wavelets in more detail. After a specific wave of 
interest has been detected, isolated, and extracted, methods targeted to the expected 
characteristics of the event may be applied for directed analysis of the corresponding 
physiological or pathological event. Analysis of the event is then not hindered or 
obscured by other events or artifacts in the acquired signal. 
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4.13 STUDY QUESTIONS AND PROBLEMS 

1. Prove that the autocorrelation function (ACF) &,(T) of any function z( t )  is maximum 
at T = 0. 
(Hint: Start with E [ { z ( t  + T )  f ~ ( t ) } ~ ]  2 0.) 

2. For a stationary process z, prove that the ACF is even symmetric, that is, & ( T )  = 
&( -T ) .  You may use the expectation or time-average definition of the ACE 

3. Starting with the continuous time-average definition of the ACF, prove that the Fourier 
transform of the ACF is the PSD of the signal. 

4. What are the Fourier-domain equivalents of the autocorrelation function and the cross- 
correlation function? Describe their common features and differences. List their 
applications in biomedical signal analysis. 

5 .  A signal z ( t )  is transmitted through a channel. The received signal y ( t )  is a scaled, 
shifted, and noisy version of z(t )  given as y ( t )  = az(t - t o )  + q(t)  where a is a scale 
factor, t o  is the time delay, and q(t)  is noise. Assume that the noise process has zero 
mean and is statistically independent of the signal process, and that all processes are 
stationary. 
Derive expressions for the mean and the ACF of y ( t )  in terms of the statistics of z and 
rl. 

6. Derive an expression for the ACF of the signal z( t )  = sin(w0t). Use the time-average 
definition of the ACE 
From the ACF, derive an expression for the PSD of the signal. Show all steps. 

7. A rhythmic episode of a theta wave in an EEG signal is approximated by a researcher 
to be a sine wave of frequency 5 H a .  The signal is sampled at 100 H z .  
Draw a schematic representation of the ACF of the episode for delays up to 0.5 8. Label 
the time axis in samples and in seconds. 
Draw a schematic representation of the PSD of the episode. Label the frequency axis 
in H r .  

8. The values of a signal sampled at 100 Hz are given by the series 
{0,0,0,0,10,10,10,0,0,0,0,0,5,5,5,0,0,0,0,0, -3 , -3 , -3 ,0 ,0 ,0 ) .  
An investigator performs template matching with the pattern (0,5,5,5,0}. The first 
sample in each array stands for zero time. 
Plot the output of the template-matching operation and interpret the result. Label the 
time axis in seconds. 

z(n)={0,1,2, l ,O,-1,-2,-1,0}forn=0,1,2 ,..., 8. 
a) Draw a plot of $(TI) .  

b) Compose a signal y (n )  defined as g ( n )  = 3 z ( n )  + 2z(n - 12) - z(n - 24). Draw 
a plot of y(n). 
c) Design a matched filter to detect the presence of z(n) in y(n) .  Explain how the 
impulse response h(n) and the frequency response H ( w )  of the filter are related to 

d) Compute the output of the filter and plot it. Interpret the output of the filter. 
10. A researcher uses the derivative operator (filter) specified as w ( n )  = z(n) - z(n - l), 

where z(n)  is the input and w ( n )  is the output. The result is then passed through the 

9. A biphasic signal z(n) is represented by the series of samples 

z(n). Plot h(n). 
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moving-average filter y(n) = i [ w ( n )  + w(n - 1) + w(n - 2)], where y(n) is the 
final output desired. 
(a) Derive the transfer functions (in the z-domain) of the two filters individually as well 
as that of the combination. 
(b) Does it matter which of the two filters is placed first? Why (not)? 
(c) Derive the impulse response of each filter and that of the combination. Plot the three 
signals. 
(d) The signal described by the samples 
(O,O, . . . ,0,6,6,6,6,6,6,6,6,0,0,. . .) 
is applied to the system. Derive the values of the final output signal. Explain the effect 
of the operations on the signal. 

4.14 LABORATORY EXERCISES AND PROJECTS 

Note: Data files related to the exercises are available at the site 
ftp://ftp.ieee.org/uploads/press/rangay y an/ 

1. Implement the Pan-Tompkins method for QRS detection in MATLAB. You may employ 
a simple threshold-based method to detect QRS complexes as the procedure will be run 
off-line. 
Apply the procedure to the signals in the files ECG3.dat, ECG4.dat, ECGLdat, and 
ECG6.dat, sampled at a rate of 200 Hz (see the file ECGS.m). Compute the averaged 
heart rate and QRS width for each record. Verify your results by measuring the 
parameters visually from plots of the signals. 

2. The files eegl-xx.dat (where xx indicates the channel name) give eight simultaneously 
recorded channels of EEG signals with the alpha rhythm. (You may read the signals 
using the MATLAB program in the file eeg1.m.) The sampling rate is 100 Hr per 
channel. Cut out a portion of a signal with a clear presence of the alpha rhythm for 
use as a template or reference signal. Perform cross-correlation of the template with 
running (short-time) windows of various channels and study the use of the results for 
the detection of the presence of the alpha rhythm. 

3. The files eeg2-xx.dat (where xx indicates the channel name) give ten simultaneously 
recorded channels of EEG signals with spike-and-wave complexes. (You may read the 
signals using the MATLAB program in the file eeg2.m.) The sampling rate is 100 Hz 
per channel. Cut out one spike-and-wave complex from any EEG channel and use it as 
a template. Perform template matching by cross-correlation or by designing a matched 
filter. Apply the procedure to the same channel from which the template was selected 
as well as to other channels. Study the results and explain how they may be used to 
detect spike-and-wave complexes. 

4. The files pecl.dat, pec33.dat, and pec52.dat give three-channel recordings of the PCG, 
ECG, and carotid pulse signals (sampled at 1,000 HI; you may read the signals using 
the program in the file plotpecm). The signals in pecl.dat (adult male) and pec52.dat 
(male subject, 23 years) are normal; the PCG signal in pec33.dat has systolic murmur, 
and is of a patient suspected to have pulmonary stenosis, ventricular septa1 defect, and 
pulmonary hypertension (female, 14 months). 
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Apply the Pan-Tompkins method for QRS detection to the ECG channel and the Lehner 
and Rangayyan method to detect the dicrotic notch in the carotid pulse channel. Ex- 
trapolate the timing information from the ECG and carotid pulse channels to detect the 
onset of S 1 and S2 in the PCG channel. What are the corrections required to compensate 
the delays between the corresponding events in the three channels? 



3 
Analvsis of Waveshape and 

J 

Wavt;fo rm Complexity 

Certain biomedical signals such as the ECG and carotid pulse have simple waveshapes 
(although the QRS wave is often referred to as a “complex”!). The readily identifi- 
able signatures of the ECG and carotid pulse are modified by abnormal events and 
pathological processes. Hence analysis of waveshapes could be useful in diagnosis. 

Signals such as the EMG and the PCG do not have waveshapes that may be iden- 
tified easily. EMG signals are indeed complex interference patterns of innumerable 
SMUAPs. PCG signals represent vibration waves that do not possess specific wave- 
shapes. Regardless, even the complexity of the waveforms in signals such as the 
EMG and the PCG does vary in relation to physiological and pathological phenom- 
ena. Analyzing the waveform complexity of such signals may assist in gaining an 
understanding of the processes they reflect. 

5.1 PROBLEM STATEMENT 

Explain how waveshapes and waveform complexity in biomedical signals relate to 
the characteristics of the underlying physiological and pathological phenomena. 
Propose techniques to parameterize and analyze the signal features you identih. 

As in the preceding chapters, the problem statement given above is generic and 
represents the theme of the present chapter. The following section presents illus- 
trations of the problem with case-studies that provide more specific definitions of 
the problem with a few signals of interest. The remaining sections of the chapter 
describe techniques to address the stated problems. It should be noted again that 
although signal analysis techniques are proposed in the context of specific signals 
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