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In terms of vector-matrix equations, we have

(3–22)

(3–23)

Equations (3–22) and (3–23) give a state-space representation of the inverted-pendulum system.
(Note that state-space representation of the system is not unique. There are infinitely many such
representations for this system.)
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3–3 MATHEMATICAL MODELING OF ELECTRICAL SYSTEMS

Basic laws governing electrical circuits are Kirchhoff’s current law and voltage law.
Kirchhoff’s current law (node law) states that the algebraic sum of all currents entering and
leaving a node is zero. (This law can also be stated as follows: The sum of currents enter-
ing a node is equal to the sum of currents leaving the same node.) Kirchhoff’s voltage law
(loop law) states that at any given instant the algebraic sum of the voltages around any loop
in an electrical circuit is zero. (This law can also be stated as follows:The sum of the volt-
age drops is equal to the sum of the voltage rises around a loop.) A mathematical model
of an electrical circuit can be obtained by applying one or both of Kirchhoff’s laws to it.

This section first deals with simple electrical circuits and then treats mathematical
modeling of operational amplifier systems.

LRC Circuit. Consider the electrical circuit shown in Figure 3–7. The circuit con-
sists of an inductance L (henry), a resistance R (ohm), and a capacitance C (farad).
Applying Kirchhoff’s voltage law to the system, we obtain the following equations:

(3–24)

(3–25) 
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Electrical circuit.
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Equations (3–24) and (3–25) give a mathematical model of the circuit.
A transfer-function model of the circuit can also be obtained as follows: Taking the

Laplace transforms of Equations (3–24) and (3–25), assuming zero initial conditions,
we obtain

If ei is assumed to be the input and eo the output, then the transfer function of this system
is found to be

(3–26)

A state-space model of the system shown in Figure 3–7 may be obtained as follows: First,
note that the differential equation for the system can be obtained from Equation (3–26) as

Then by defining state variables by

and the input and output variables by

we obtain

and

These two equations give a mathematical model of the system in state space.

Transfer Functions of Cascaded Elements. Many feedback systems have com-
ponents that load each other. Consider the system shown in Figure 3–8. Assume that ei

is the input and eo is the output. The capacitances C1 and C2 are not charged initially.
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It will be shown that the second stage of the circuit (R2C2 portion) produces a loading
effect on the first stage (R1C1 portion). The equations for this system are

(3–27)

and

(3–28)

(3–29)

Taking the Laplace transforms of Equations (3–27) through (3–29), respectively, using
zero initial conditions, we obtain

(3–30)

(3–31)

(3–32)

Eliminating I1(s) from Equations (3–30) and (3–31) and writing Ei(s) in terms of I2(s),
we find the transfer function between Eo(s) and Ei(s) to be

(3–33)

The term R1C2s in the denominator of the transfer function represents the interaction
of two simple RC circuits. Since the two roots
of the denominator of Equation (3–33) are real.

The present analysis shows that, if two RC circuits are connected in cascade so
that the output from the first circuit is the input to the second, the overall transfer
function is not the product of and The reason for this
is that, when we derive the transfer function for an isolated circuit, we implicitly as-
sume that the output is unloaded. In other words, the load impedance is assumed to
be infinite, which means that no power is being withdrawn at the output.When the sec-
ond circuit is connected to the output of the first, however, a certain amount of power
is withdrawn, and thus the assumption of no loading is violated.Therefore, if the trans-
fer function of this system is obtained under the assumption of no loading, then it is
not valid. The degree of the loading effect determines the amount of modification of
the transfer function.
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Complex Impedances. In deriving transfer functions for electrical circuits, we
frequently find it convenient to write the Laplace-transformed equations directly,
without writing the differential equations. Consider the system shown in Figure 3–9(a).
In this system, Z1 and Z2 represent complex impedances. The complex impedance 
Z(s) of a two-terminal circuit is the ratio of E(s), the Laplace transform of the 
voltage across the terminals, to I(s), the Laplace transform of the current through 
the element, under the assumption that the initial conditions are zero, so that
Z(s)=E(s)/I(s). If the two-terminal element is a resistance R, capacitance C, or
inductance L, then the complex impedance is given by R, 1/Cs, or Ls, respectively. If
complex impedances are connected in series, the total impedance is the sum of the
individual complex impedances.

Remember that the impedance approach is valid only if the initial conditions
involved are all zeros. Since the transfer function requires zero initial conditions, the
impedance approach can be applied to obtain the transfer function of the electrical
circuit. This approach greatly simplifies the derivation of transfer functions of elec-
trical circuits.

Consider the circuit shown in Figure 3–9(b).Assume that the voltages ei and eo are
the input and output of the circuit, respectively. Then the transfer function of this
circuit is

For the system shown in Figure 3–7,

Hence the transfer function Eo(s)/Ei(s) can be found as follows:

which is, of course, identical to Equation (3–26).
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EXAMPLE 3–7 Consider again the system shown in Figure 3–8. Obtain the transfer function Eo(s)/Ei(s) by use
of the complex impedance approach. (Capacitors C1 and C2 are not charged initially.)

The circuit shown in Figure 3–8 can be redrawn as that shown in Figure 3–10(a), which can be
further modified to Figure 3–10(b).

In the system shown in Figure 3–10(b) the current I is divided into two currents I1 and I2.
Noting that

we obtain

Noting that

we obtain

Substituting Z1=R1, Z2=1/ AC1s B , Z3=R2, and Z4=1/ AC2s B into this last equation, we get

which is the same as that given by Equation (3–33).
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A–3–3. Obtain a state-space representation of the system shown in Figure 3–22.

Solution. The system equations are

The output variables for this system are y1 and y2. Define state variables as

Then we obtain the following equations:

Hence, the state equation is

and the output equation is

A–3–4. Obtain the transfer function Xo(s)/Xi(s) of the mechanical system shown in Figure 3–23(a). Also
obtain the transfer function Eo(s)/Ei(s) of the electrical system shown in Figure 3–23(b). Show that
these transfer functions of the two systems are of identical form and thus they are analogous systems.
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Solution. In Figure 3–23(a) we assume that displacements xi, xo, and y are measured from their
respective steady-state positions.Then the equations of motion for the mechanical system shown
in Figure 3–23(a) are

By taking the Laplace transforms of these two equations, assuming zero initial conditions, we have

If we eliminate Y(s) from the last two equations, then we obtain

or

Hence the transfer function Xo(s)/Xi(s) can be obtained as

For the electrical system shown in Figure 3–23(b), the transfer function Eo(s)/Ei(s) is found to be
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A comparison of the transfer functions shows that the systems shown in Figures 3–23(a) and (b)
are analogous.

A–3–5. Obtain the transfer functions Eo(s)/Ei(s) of the bridged T networks shown in Figures 3–24(a)
and (b).

Solution. The bridged T networks shown can both be represented by the network of
Figure 3–25(a), where we used complex impedances.This network may be modified to that shown
in Figure 3–25(b).

In Figure 3–25(b), note that
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Hence

Then the voltages Ei(s) and Eo(s) can be obtained as

Hence, the transfer function Eo(s)/Ei(s) of the network shown in Figure 3–25(a) is obtained as

(3–38)

For the bridged T network shown in Figure 3–24(a), substitute

into Equation (3–38). Then we obtain the transfer function Eo(s)/Ei(s) to be

Similarly, for the bridged T network shown in Figure 3–24(b), we substitute

into Equation (3–38). Then the transfer function Eo(s)/Ei(s) can be obtained as follows:
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