Chapter Four: Analysis of Structures

4.1 1 Analysis of Frames

To analyze a frame, we can disconnect the member from the structure and draw the free-body diagram of the member. This approach is called the method of members. In this method, three equilibrium equations can be used:
$\sum F_{x}=0$
$\sum F_{y}=0$
$\sum M=0$
Below is a figure that shows the difference between axial and non-axial members.

Example No. 1: For structure shown in Figure, Find the horizontal and vertical components of the hinge force at B, C, and A .

Solution:
Draw F.B.D. for all member

At member CB as F.B.D:
${ }^{+} \sum M_{C}=0$
$20 \times 3-B_{y} \times 6=0$

$B_{y}=10 k N \uparrow$ answer
$\rightarrow^{+} \sum F_{x}=0$
$C_{x}-B_{x}=0$
$C_{x}=B_{x}$
$\uparrow^{+} \sum F_{y}=0$
$C_{y}-20+10=0 \quad \Rightarrow \quad C_{y}=10 k N \uparrow \quad$ answer

At member AB as F.B.D:
$\perp \sum M_{A}=0$
$10 \times 5+10 \times 3+B_{x} \times 4=0$
$B_{x}=-20 k N=20 k N \leftarrow$ answer
$\operatorname{sub} B_{x}$ in eq. (1): (in member CB)
$C_{x}=B_{x}=-20 k N=20 k N \leftarrow$ answer
$\rightarrow^{+} \sum F_{x}=0$

$A_{x}-20=0 \quad \Rightarrow \quad A_{x}=20 k N \rightarrow \quad$ answer
$\uparrow^{+} \sum F_{y}=0$
$A_{y}-10-10=0$
$A_{y}=20 k N \uparrow$ answer

Example No. 2: The frame in Figure supports the $50-\mathrm{kg}$ cylinder. Determine the horizontal and vertical components of reaction at A and the force at C.

Solution:

Draw F.B.D. for pulley D and all member:

Note: member BC is axial member

At pulleys D as F.B.D:
$\rightarrow^{+} \sum F_{x}=0$

At member ABD as F.B.D:
${ }^{+} \sum M_{A}=0$
$490.5 \times 1.2-490.5 \times 0.9-F_{B C} \times 0.6=0$
$F_{B C}=245.25 N \leftarrow$
$\rightarrow^{+} \sum F_{x}=0$

$-490.5-245.25+A_{x}=0$
$A_{x}=735.75 \mathrm{~N} \rightarrow$
$\uparrow^{+} \sum F_{y}=0$
$A_{y}-490.5=0 \quad \Rightarrow \quad A_{y}=490.5 N \uparrow$

Example No. 3: The frame shown in Figure is supported by a hinge at A and a roller at E . Compute the horizontal and vertical components of the hinge forces at B and C as they act upon member ABC .

Solution:

Draw F.B.D. for all member

At member BD as F.B.D:
${ }^{+} \sum M_{D}=0$
$24 \times 1.5-B_{y} \times 3=0$
$B_{y}=12 k N \downarrow \quad$ answer

From the FBD of the whole system
$\overbrace{}^{\perp} \sum M_{E}=0$
$24 \times 0.5-A_{y} \times 5=0$
$A_{y}=2.4 k N \downarrow$
$\rightarrow^{+} \sum F_{x}=0 \quad \Rightarrow$
$A_{x}=0$

At member ABC as F.B.D:
${ }_{\sum} M_{C}=0$
$-A_{y} \times 2.5+A_{x} \times 5+B_{y} \times 1.5-B_{x} \times 3=0$
$-2.4 \times 2.5+0+12 \times 1.5-B_{x} \times 3=0$
$B_{x}=4 k N \rightarrow \quad$ answer
$\rightarrow^{+} \sum F_{x}=0$

$0+4-C_{x}=0$
$C_{x}=4 k N \leftarrow \quad$ answer
$\uparrow^{+} \sum F_{y}=0$
$-2.4+12-C_{y}=0$
$C_{y}=9.6 \mathrm{kN} \downarrow \quad$ answer

Problem:

1. Determine the horizontal and vertical components of force which the pin at C exerts on member BC of the frame in Figure.

Answer: $C_{x}=577.35 \mathrm{~N} \leftarrow, \quad C_{y}=1000 \mathrm{~N} \uparrow$
2. Calculate the x - and y-components of all forces acting on each member of the loaded frame.

Dimensions in millimeters
Answer: $A_{y}=75 \mathrm{~N} \uparrow, B_{y}=150 \mathrm{~N}, D_{y}=225 \mathrm{~N}, B_{x}=D_{x}=E_{x}=173.2 \mathrm{~N}$,

$$
E_{y}=750 N, \quad G_{x}=0, G_{y}=525 N \uparrow
$$

3. For the frame shown in Figure, determine the horizontal and vertical components of the hinge force at B as it acts upon member AC .

Answer: $B_{x}=160 \mathrm{kN} \leftarrow, B_{y}=150 \mathrm{kN} \uparrow$
4. For what value M of the clockwise couple will make the horizontal component of the pin reaction at A be zero.

Answer: $M=150 \mathrm{~N} . \mathrm{m}$

