

Mean Deviation

Mean Deviation is defined as the average of the sum of deviation of absolute values from their mean

<u>Mean Deviation for the not tabulated data (ungrouped data)</u>: $M.D = \frac{\sum |x_i - \overline{X}|}{n}$

Example: find the mean deviation of the following data 11, 12, 13, 12, 13, 11

Sol:
$$\bar{X} = \frac{\sum x_i}{n} = \frac{11+12+13+12+13+11}{6} = 12$$

 $M.D = \frac{\sum |x_i - \bar{X}|}{N} = \frac{4}{6} = 0.666$

x _i	$ x_i - \overline{X} $
11	1
12	0
13	1
12	0
13	1
11	1
Sum.	4

Mean deviation for the tabulated data (grouped data): $M.D = \frac{\sum f_i |x_i - \overline{X}|}{n}$

Example: find the mean deviation of the following data, which represents the distribution of college of pharmacy student by weight

class	60-62	63-65	66-68	69-71	72-74
frequency	5	15	45	27	8

Sol:

class	frequency	x _i	$x_i f_i$	$ x_i - \overline{X} $	$f_i x_i - \overline{X} $
60-62	5	61	305	6.54	32.7
63-65	15	64	960	3.54	53.1
66-68	45	67	3015	0.54	24.3
69-71	27	70	1890	2.46	66.42
72-74	8	73	584	5.46	43.68
sum	100		6754		220.2

$$M. D = \frac{\sum f_i |x_i - \bar{X}|}{n}, \bar{X} = \frac{\sum f_i x_i}{\sum f_i} = \frac{6754}{100} = 67.54$$

$$M.D = \frac{\sum f_i |x_i - \bar{X}|}{n} = \frac{220.2}{100} = 2.202$$

Variance, Standard Deviation

It is a measurement of the spread between data set and denoted by S^2 . The formula for variance is:

For not tabulated data use the $S^2 = \frac{\sum (x_i - \overline{X})^2}{n}$, S: standard deviation

For tabulated data use the $S^2 = \frac{\sum f_i (x_i - \overline{X})^2}{\sum f_i}$

Example: Find the variance and standard deviation for 24, 25, 26, 27, 28

Solution:

$$\overline{X} = \frac{\sum x_i}{n} = \frac{24 + 25 + 26 + 27 + 28}{5}$$
$$= \frac{130}{5} = 26$$

<i>xi</i>	$x_i - \overline{X}$	$(x_i - \overline{X})^2$
24	-2	4
25	-1	1
26	0	0
27	1	1
28	2	4
$\sum x_i = 130$	0	10

$$S^{2} = \frac{\sum (x_{i} - \overline{X})^{2}}{n} = \frac{10}{5} = 2$$
$$S = \sqrt{S^{2}} = \sqrt{2} = 1.414$$

Coefficient of variation

It is used to show the effect of the change in the relation to other statistics, in addition to

obtaining a non-dimensional coefficient from the ratio of the standard deviation to the mean, and denoted by C. V

$$C.V = \frac{S}{\overline{X}}$$

Coefficient of Quartile Variation: it is known by this equation:

$$C_{q.\nu.}=\frac{Q_3-Q_1}{Q_3+Q_1}$$

First Stage / Second Lector

Example: In a detailed study to find number of patients with COVID -19 within specific, it is found:

Age No.of patient	No.of patient		
10-19	20		
20-29	48		
30-39	51		
40-49	30		
50-59	26		
60-69	9		

Find Coefficient of variation

Sol.

Age	fi	xi	$f_i x_i$	$x_i - \overline{X}$	$(x_i - \overline{X})^2$	$((x_i - \overline{X})^2)f_i$
10-19	20	14.5	290	-21.14	446.9	8938
20-29	48	24.5	1176	-11.14	124.1	5956.8
30-39	51	34.5	1759.5	-1.14	1.3	66.3
40-49	30	44.5	1335	8.86	78.5	2355
50-59	26	54.4	1417	18.86	355.7	9248.2
60-69	9	64.5	580.5	28.86	832.9	7496.1
Summation	184		6558			34060.4

$$\overline{X} = \frac{\sum f_i x_i}{\sum f_i} = \frac{6558}{184} = 35.64$$

$$S^{2} = \frac{\sum f_{i}(x_{i} - \overline{X})^{2}}{\sum f_{i}} = \frac{34060.4}{184} = 185.11$$
$$S = \sqrt{S^{2}} = \sqrt{185.11} = 13.6$$
$$C.V = \frac{S}{\overline{X}} = \frac{13.6}{35.64} = 0.38$$

3