Mean Deviation

Mean Deviation is defined as the average of the sum of deviation of absolute values from their mean
$\underline{\text { Mean Deviation for the not tabulated data (ungrouped data): }} \boldsymbol{M} . \boldsymbol{D}=\frac{\sum\left|x_{i}-\bar{X}\right|}{n}$
Example: find the mean deviation of the following data 11, 12, 13, 12, 13, 11
Sol: $\bar{X}=\frac{\sum x_{i}}{n}=\frac{11+12+13+12+13+11}{6}=12$
$M . D=\frac{\sum\left|x_{i}-\bar{X}\right|}{N}=\frac{4}{6}=0.666$

$\boldsymbol{x}_{\boldsymbol{i}}$	$\left\|\boldsymbol{x}_{\boldsymbol{i}}-\overline{\boldsymbol{X}}\right\|$
11	1
12	0
13	1
12	0
13	1
11	1
Sum.	4

Mean deviation for the tabulated data (grouped data): $\boldsymbol{M} . \boldsymbol{D}=\frac{\sum \boldsymbol{f}_{\boldsymbol{i}}\left|\boldsymbol{x}_{\boldsymbol{i}}-\overline{\boldsymbol{X}}\right|}{\boldsymbol{n}}$
Example: find the mean deviation of the following data, which represents the distribution of college of pharmacy student by weight

class	$60-62$	$63-65$	$66-68$	$69-71$	$72-74$
frequency	5	15	45	27	8

Sol:

class	frequency	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{f}_{\boldsymbol{i}}$	$\left\|\boldsymbol{x}_{\boldsymbol{i}}-\overline{\boldsymbol{X}}\right\|$	$\boldsymbol{f}_{\boldsymbol{i}}\left\|\boldsymbol{x}_{\boldsymbol{i}}-\overline{\boldsymbol{X}}\right\|$
$60-62$	5	61	305	6.54	32.7
$63-65$	15	64	960	3.54	53.1
$66-68$	45	67	3015	0.54	24.3
$69-71$	27	70	1890	2.46	66.42
$72-74$	8	73	584	5.46	43.68
sum	100		6754		220.2

M. $\boldsymbol{D}=\frac{\sum f_{i}\left|x_{i}-\bar{X}\right|}{n}, \bar{X}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{6754}{100}=67.54$
$M . D=\frac{\sum f_{i}\left|x_{i}-\bar{X}\right|}{n}=\frac{220.2}{100}=2.202$

Variance, Standard Deviation

It is a measurement of the spread between data set and denoted by S^{2}. The formula for variance is:

For not tabulated data use the $S^{2}=\frac{\sum\left(x_{i}-\bar{X}\right)^{2}}{n}, \mathrm{~S}$: standard deviation
For tabulated data use the $S^{2}=\frac{\sum f_{i}\left(x_{i}-\bar{X}\right)^{2}}{\sum f_{i}}$
Example: Find the variance and standard deviation for 24, 25, 26, 27, 28
Solution:

$$
\begin{aligned}
\bar{X}=\frac{\sum x_{i}}{n}= & \frac{24+25+26+27+28}{5} \\
& =\frac{130}{5}=26
\end{aligned}
$$

$S^{2}=\frac{\sum\left(x_{i}-\bar{X}\right)^{2}}{n}=\frac{10}{5}=2$

x_{i}	$x_{i}-\bar{X}$	$\left(x_{i}-\bar{X}\right)^{2}$
24	-2	4
25	-1	1
26	0	0
27	1	1
28	2	4
$\sum x_{i}=130$	0	10

$S=\sqrt{S^{2}}=\sqrt{2}=1.414$

Coefficient of variation

It is used to show the effect of the change in the relation to other statistics, in addition to obtaining a non-dimensional coefficient from the ratio of the standard deviation to the mean, and denoted by $\mathrm{C} . \mathrm{V}$

$$
C . V=\frac{S}{\bar{X}}
$$

Coefficient of Quartile Variation: it is known by this equation:

$$
C_{q . v .}=\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{1}}
$$

Example: In a detailed study to find number of patients with COVID -19 within specific, it is found:

Age No.of patient	No.of patient
$10-19$	20
$20-29$	48
$30-39$	51
$40-49$	30
$50-59$	26
$60-69$	9

Find Coefficient of variation
Sol.

Age	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}-\overline{\boldsymbol{X}}$	$\left(\boldsymbol{x}_{\boldsymbol{i}}-\overline{\boldsymbol{X}}\right)^{\mathbf{2}}$	$\left(\left(\boldsymbol{x}_{\boldsymbol{i}}-\overline{\boldsymbol{X}}\right)^{\mathbf{2}}\right) \boldsymbol{f}_{\boldsymbol{i}}$
$10-19$	20	14.5	290	-21.14	446.9	8938
$20-29$	48	24.5	1176	-11.14	124.1	5956.8
$30-39$	51	34.5	1759.5	-1.14	1.3	66.3
$40-49$	30	44.5	1335	8.86	78.5	2355
$50-59$	26	54.4	1417	18.86	355.7	9248.2
$60-69$	9	64.5	580.5	28.86	832.9	7496.1
Summation	184		6558			34060.4

$\bar{X}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{6558}{184}=35.64$
$S^{2}=\frac{\sum f_{i}\left(x_{i}-\bar{X}\right)^{2}}{\sum f_{i}}=\frac{34060.4}{184}=185.11$
$S=\sqrt{S^{2}}=\sqrt{185.11}=13.6$
$C . V=\frac{S}{\bar{X}}=\frac{13.6}{35.64}=0.38$

