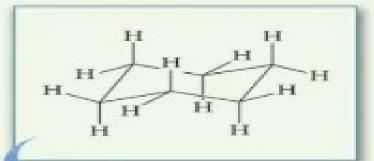


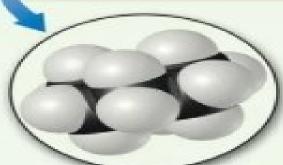
SOLUBILITY

Definition

Solution	A system in which molecules of a solute are dissolved in a solvent vehicle		
Solubility	The concentration of solute in a saturated solution at a certain temperature and pressure		
Saturated Solution	A solution contains a solute at the limit of its solubility at any given temperature and pressure		
Sub-saturated Solution	A solution containing the dissolved solute in a concentration below that necessary for complete saturation		
Supersaturated Solution	A Solution containing the dissolved solute above its normal solubility limit		

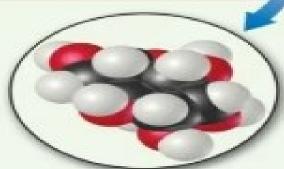

Factors Affecting Solubility

- ➤ The stronger the attraction between solute and solvent molecules, the greater the solubility.
- Like dissolves like (the substances have similar intermolecular attractive forces.)
- Polar substances tend to dissolve in polar solvents. Non-polar substances do not dissolve in polar solvents.


Factors Affecting Solubility

HYDROGEN BONDING AND AQUEOUS SOLUBILITY

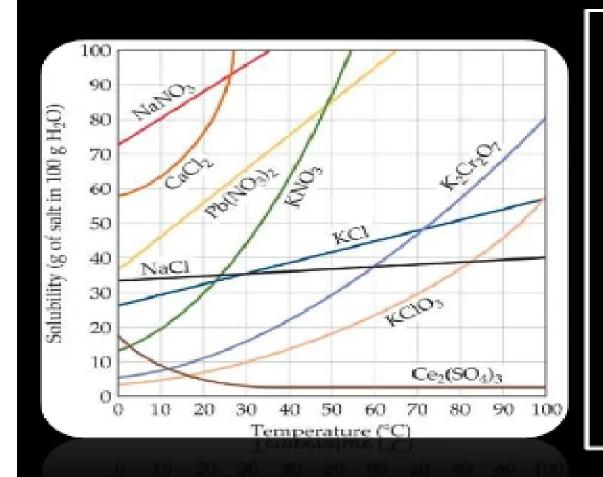
The presence of OH groups capable of hydrogen bonding with water enhances the aqueous solubility of organic molecules.



Cyclohexane, C₆H₁₂, has no polar OH groups

Cyclohexane is essentially insoluble in water.

Glucose, C₆H₁₂O₆, has five OH groups


Glucose is highly soluble in water.

Glucose (which has hydrogen bonding) is very soluble in water, while cyclohexane (which only has dispersion forces) is not.

LABORATORY ACTIVITY 2.8 FACTORS SOLUBILITY

SOLVENT	WATER	KEROSENE	ACETONE	ALCOHOL
Oil	IMMISCIBLE	MISCIBLE	MISCIBLE	S/MISCIBLE
SOLVENT	NaCl	$C_{12}H_{22}O_{11}$	C ₁₀ H ₈	$\mathbf{I_2}$

Temperature

Generally, the solubility of *solid* solutes in liquid solvents increases with increasing temperature.

SOLUTE	COLD WATER	HOT WATER	TIME TO DISSOLVE
Salt	TAKES TIME TO DISSOLVE	EASILY DISSOLVED	
Sugar	TAKES TIME TO DISSOLVE	EASILY DISSOLVED	
KNO_3	TAKES TIME TO DISSOLVE	EASILY DISSOLVED	

Molecular Size and Solubility

 Small molecules are often more soluble than larger molecules.

Effect of Stirring

- ✓ Stirring only increases the speed of the process - it increases the movement of the solvent that exposes solute, thus enabling solubility.
- ✓ As molecules in liquid substances are in constant move, the process would take place anyway, but it would take more time.

