Mathematical Modeling
of Control Systems

2-1 INTRODUCTION

In studying control systems the reader must be able to model dynamic systems in math-
ematical terms and analyze their dynamic characteristics. A mathematical model of a dy-
namic system is defined as a set of equations that represents the dynamics of the system
accurately, or at least fairly well. Note that a mathematical model is not unique to a
given system. A system may be represented in many different ways and, therefore, may
have many mathematical models, depending on one’s perspective.

The dynamics of many systems, whether they are mechanical, electrical, thermal,
economic, biological, and so on, may be described in terms of differential equations.
Such differential equations may be obtained by using physical laws governing a partic-
ular system—for example, Newton’s laws for mechanical systems and Kirchhoff’s laws
for electrical systems. We must always keep in mind that deriving reasonable mathe-
matical models is the most important part of the entire analysis of control systems.

Throughout this book we assume that the principle of causality applies to the systems
considered. This means that the current output of the system (the output at time ¢ = 0)
depends on the past input (the input for + < 0) but does not depend on the future input
(the input for ¢ > 0).

Mathematical Models. Mathematical models may assume many different forms.
Depending on the particular system and the particular circumstances, one mathemati-
cal model may be better suited than other models. For example, in optimal control prob-
lems, it is advantageous to use state-space representations. On the other hand, for the
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transient-response or frequency-response analysis of single-input, single-output, linear,
time-invariant systems, the transfer-function representation may be more convenient
than any other. Once a mathematical model of a system is obtained, various analytical
and computer tools can be used for analysis and synthesis purposes.

Simplicity Versus Accuracy. In obtaining a mathematical model, we must make
a compromise between the simplicity of the model and the accuracy of the results of
the analysis. In deriving a reasonably simplified mathematical model, we frequently find
it necessary to ignore certain inherent physical properties of the system. In particular,
if a linear lumped-parameter mathematical model (that is, one employing ordinary dif-
ferential equations) is desired, it is always necessary to ignore certain nonlinearities and
distributed parameters that may be present in the physical system. If the effects that
these ignored properties have on the response are small, good agreement will be obtained
between the results of the analysis of a mathematical model and the results of the
experimental study of the physical system.

In general, in solving a new problem, it is desirable to build a simplified model so that
we can get a general feeling for the solution. A more complete mathematical model may
then be built and used for a more accurate analysis.

We must be well aware that a linear lumped-parameter model, which may be valid in
low-frequency operations, may not be valid at sufficiently high frequencies, since the neg-
lected property of distributed parameters may become an important factor in the dynamic
behavior of the system. For example, the mass of a spring may be neglected in low-
frequency operations, but it becomes an important property of the system at high fre-
quencies. (For the case where a mathematical model involves considerable errors, robust
control theory may be applied. Robust control theory is presented in Chapter 10.)

Linear Systems. A system is called linear if the principle of superposition
applies. The principle of superposition states that the response produced by the
simultaneous application of two different forcing functions is the sum of the two
individual responses. Hence, for the linear system, the response to several inputs can
be calculated by treating one input at a time and adding the results. It is this principle
that allows one to build up complicated solutions to the linear differential equation
from simple solutions.

In an experimental investigation of a dynamic system, if cause and effect are pro-
portional, thus implying that the principle of superposition holds, then the system can
be considered linear.

Linear Time-Invariant Systems and Linear Time-Varying Systems. A differ-
ential equation is linear if the coefficients are constants or functions only of the in-
dependent variable. Dynamic systems that are composed of linear time-invariant
lumped-parameter components may be described by linear time-invariant differen-
tial equations—that is, constant-coefficient differential equations. Such systems are
called linear time-invariant (or linear constant-coefficient) systems. Systems that
are represented by differential equations whose coefficients are functions of time
are called linear time-varying systems. An example of a time-varying control sys-
tem is a spacecraft control system. (The mass of a spacecraft changes due to fuel
consumption.)
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Outline of the Chapter. Section 2-1 has presented an introduction to the math-
ematical modeling of dynamic systems. Section 2-2 presents the transfer function and
impulse-response function. Section 2-3 introduces automatic control systems and Sec-
tion 2—4 discusses concepts of modeling in state space. Section 2-5 presents state-space
representation of dynamic systems. Section 2—-6 discusses transformation of mathemat-
ical models with MATLAB. Finally, Section 2-7 discusses linearization of nonlinear
mathematical models.

2-2 TRANSFER FUNCTION AND IMPULSE-
RESPONSE FUNCTION

In control theory, functions called transfer functions are commonly used to character-
ize the input-output relationships of components or systems that can be described by lin-
ear, time-invariant, differential equations. We begin by defining the transfer function
and follow with a derivation of the transfer function of a differential equation system.
Then we discuss the impulse-response function.

Transfer Function. The transfer function of a linear, time-invariant, differential
equation system is defined as the ratio of the Laplace transform of the output (response
function) to the Laplace transform of the input (driving function) under the assumption
that all initial conditions are zero.

Consider the linear time-invariant system defined by the following differential equation:

()  (n-1) _
ay + ay +--+a,y+a,y

(m) (m=1)
=byx + byx +---+ b, 1x +b,x (n=m)

where y is the output of the system and x is the input. The transfer function of this sys-
tem is the ratio of the Laplace transformed output to the Laplace transformed input
when all initial conditions are zero, or

<[ output]

Transfer function = G(s .
g[mpuﬂ zero initial conditions

Y(s)  bys™ + bys™ '+ - +b,_5s+b,
X(s) aps" + a;s" P+ -+ a, s+ a,

By using the concept of transfer function, it is possible to represent system dynam-
ics by algebraic equations in s. If the highest power of s in the denominator of the trans-
fer function is equal to n, the system is called an nth-order system.

Comments on Transfer Function. The applicability of the concept of the trans-
fer function is limited to linear, time-invariant, differential equation systems. The trans-
fer function approach, however, is extensively used in the analysis and design of such
systems. In what follows, we shall list important comments concerning the transfer func-
tion. (Note that a system referred to in the list is one described by a linear, time-invariant,
differential equation.)
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1. The transfer function of a system is a mathematical model in that it is an opera-
tional method of expressing the differential equation that relates the output vari-
able to the input variable.

2. The transfer function is a property of a system itself, independent of the magnitude
and nature of the input or driving function.

3. The transfer function includes the units necessary to relate the input to the output;
however, it does not provide any information concerning the physical structure of
the system. (The transfer functions of many physically different systems can be
identical.)

4. If the transfer function of a system is known, the output or response can be stud-
ied for various forms of inputs with a view toward understanding the nature of
the system.

5. If the transfer function of a system is unknown, it may be established experimen-
tally by introducing known inputs and studying the output of the system. Once
established, a transfer function gives a full description of the dynamic character-
istics of the system, as distinct from its physical description.

Convolution Integral. For a linear, time-invariant system the transfer function
G(s)is

Y(s)
X(s)

G(s) =

where X (s) is the Laplace transform of the input to the system and Y (i) is the Laplace
transform of the output of the system, where we assume that all initial conditions in-
volved are zero. It follows that the output Y (s) can be written as the product of G(s) and
X(s),or

Y(s) = G(s)X(s) 2-1)

Note that multiplication in the complex domain is equivalent to convolution in the time
domain (see Appendix A), so the inverse Laplace transform of Equation (2-1) is given
by the following convolution integral:

y(1) = / x(r)glt — 7)dr

t
= /g(T)x(t — 71)dt
0
where both g(¢) and x(t) are O for ¢ < 0.

Impulse-Response Function. Consider the output (response) of a linear time-
invariant system to a unit-impulse input when the initial conditions are zero. Since the
Laplace transform of the unit-impulse function is unity, the Laplace transform of the
output of the system is

Y(s) = G(s) (2-2)
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The inverse Laplace transform of the output given by Equation (2-2) gives the impulse
response of the system. The inverse Laplace transform of G(s), or

£ G(s)] = 80

is called the impulse-response function. This function g(¢) is also called the weighting
function of the system.

The impulse-response function g(¢) is thus the response of a linear time-invariant
system to a unit-impulse input when the initial conditions are zero. The Laplace trans-
form of this function gives the transfer function. Therefore, the transfer function and
impulse-response function of a linear, time-invariant system contain the same infor-
mation about the system dynamics. It is hence possible to obtain complete informa-
tion about the dynamic characteristics of the system by exciting it with an impulse
input and measuring the response. (In practice, a pulse input with a very short dura-
tion compared with the significant time constants of the system can be considered an
impulse.)

2-3 AUTOMATIC CONTROL SYSTEMS

Figure 2-1
Element of a block
diagram.

A control system may consist of a number of components. To show the functions
performed by each component, in control engineering, we commonly use a diagram
called the block diagram. This section first explains what a block diagram is. Next, it
discusses introductory aspects of automatic control systems, including various control
actions. Then, it presents a method for obtaining block diagrams for physical systems, and,
finally, discusses techniques to simplify such diagrams.

Block Diagrams. A block diagram of a system is a pictorial representation of the
functions performed by each component and of the flow of signals. Such a diagram de-
picts the interrelationships that exist among the various components. Differing from a
purely abstract mathematical representation, a block diagram has the advantage of
indicating more realistically the signal flows of the actual system.

In a block diagram all system variables are linked to each other through functional
blocks. The functional block or simply block is a symbol for the mathematical operation
on the input signal to the block that produces the output. The transfer functions of the
components are usually entered in the corresponding blocks, which are connected by ar-
rows to indicate the direction of the flow of signals. Note that the signal can pass only
in the direction of the arrows. Thus a block diagram of a control system explicitly shows
a unilateral property.

Figure 2-1 shows an element of the block diagram. The arrowhead pointing toward
the block indicates the input, and the arrowhead leading away from the block repre-
sents the output. Such arrows are referred to as signals.

Transfer
——— function E—
G(s)
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Figure 2-2
Summing point.

Figure 2-3
Block diagram of a
closed-loop system.
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Note that the dimension of the output signal from the block is the dimension of the
input signal multiplied by the dimension of the transfer function in the block.

The advantages of the block diagram representation of a system are that it is easy
to form the overall block diagram for the entire system by merely connecting the blocks
of the components according to the signal flow and that it is possible to evaluate the
contribution of each component to the overall performance of the system.

In general, the functional operation of the system can be visualized more readily by
examining the block diagram than by examining the physical system itself. A block di-
agram contains information concerning dynamic behavior, but it does not include any
information on the physical construction of the system. Consequently, many dissimilar
and unrelated systems can be represented by the same block diagram.

It should be noted that in a block diagram the main source of energy is not explicitly
shown and that the block diagram of a given system is not unique. A number of different
block diagrams can be drawn for a system, depending on the point of view of the analysis.

Summing Point. Referring to Figure 2-2, a circle with a cross is the symbol that
indicates a summing operation. The plus or minus sign at each arrowhead indicates
whether that signal is to be added or subtracted. It is important that the quantities being
added or subtracted have the same dimensions and the same units.

Branch Point. A branch point is a point from which the signal from a block goes
concurrently to other blocks or summing points.

Block Diagram of a Closed-Loop System. Figure 2-3 shows an example of a
block diagram of a closed-loop system. The output C(s) is fed back to the summing
point, where it is compared with the reference input R(s). The closed-loop nature of
the system is clearly indicated by the figure. The output of the block, C(s) in this case,
is obtained by multiplying the transfer function G(s) by the input to the block, E(s). Any
linear control system may be represented by a block diagram consisting of blocks, sum-
ming points, and branch points.

When the output is fed back to the summing point for comparison with the input, it
is necessary to convert the form of the output signal to that of the input signal. For
example, in a temperature control system, the output signal is usually the controlled
temperature. The output signal, which has the dimension of temperature, must be con-
verted to a force or position or voltage before it can be compared with the input signal.
This conversion is accomplished by the feedback element whose transfer function is H(s),
as shown in Figure 2—4. The role of the feedback element is to modify the output before
it is compared with the input. (In most cases the feedback element is a sensor that measures

Summing Branch
point point
R(s) E(s) C(s)
G(s) >
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Figure 2—4
Closed-loop system.

R(s) E(s) C(s)
G(s) =

B(s)

A

H(s)

the output of the plant. The output of the sensor is compared with the system input, and
the actuating error signal is generated.) In the present example, the feedback signal that
is fed back to the summing point for comparison with the input is B(s) = H(s)C(s).

Open-Loop Transfer Function and Feedforward Transfer Function. Refer-
ring to Figure 24, the ratio of the feedback signal B(s) to the actuating error signal
E(s) is called the open-loop transfer function. That is,

. B(s)
Open-loop transfer function = m = G(s)H(s)

The ratio of the output C(s) to the actuating error signal E(s) is called the feed-
forward transfer function, so that

Feedforward transfer function = s G(s)

If the feedback transfer function H (s) is unity, then the open-loop transfer function and
the feedforward transfer function are the same.

Closed-Loop Transfer Function. For the system shown in Figure 2—4, the output
C(s) and input R(s) are related as follows: since

C(s) = G(s)E(s)
E(s) = R(s) — B(s)
= R(s) — H(s)C(s)
eliminating E(s) from these equations gives
C(s) = G(s)[R(s) = H(5)C(s)]
or

cls) G
R(s) 1+ G(s)H(s)

(2-3)

The transfer function relating C(s) to R(s) is called the closed-loop transfer function. It
relates the closed-loop system dynamics to the dynamics of the feedforward elements
and feedback elements.

From Equation (2-3), C(s) is given by
_ G(s)
1+ G(s)H(s)

C(s) R(s)
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Figure 2-5

(a) Cascaded system;
(b) parallel system;
(c) feedback (closed-
loop) system.
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Thus the output of the closed-loop system clearly depends on both the closed-loop trans-
fer function and the nature of the input.

Obtaining Cascaded, Parallel, and Feedback (Closed-Loop) Transfer Functions
with MATLAB. In control-systems analysis, we frequently need to calculate the cas-
caded transfer functions, parallel-connected transfer functions, and feedback-connected
(closed-loop) transfer functions. MATLAB has convenient commands to obtain the cas-
caded, parallel, and feedback (closed-loop) transfer functions.

Suppose that there are two components G;(s) and G,(s) connected differently as
shown in Figure 2-5 (a), (b), and (c), where

numl num?2

Gi8) = Gent s ) = em

To obtain the transfer functions of the cascaded system, parallel system, or feedback
(closed-loop) system, the following commands may be used:

[num, den] = series(num1,den1,num2,den?2)
[num, den] = parallel(num1,den1,num2,den2)
[num, den] = feedback(num1,den1,num2,den2)

As an example, consider the case where

10 num]l 5 num?2
G — = G — =
1) s>+ 2s+10 denl’ 2(s) s+ 5 den2
MATLAB Program 2-1 gives C(s)/R(s) = num/den for each arrangement of G(s)
and G,(s). Note that the command

printsys(num,den)

displays the num/den [that is, the transfer function C(s)/R(s) ] of the system considered.

R(s) C(s)
(@) —_— Gi(s) Ga(s) >

Y

Gi(s)
R(s) C(s)

|

Y

(b)

Y

Gafs)

Y

R(s) C(s)
— @ Gi(s) -

(© t
Gafs) [~
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Figure 2-6

Block diagram of an
industrial control
system, which
consists of an
automatic controller,
an actuator, a plant,
and a sensor

(measuring element).

MATLAB Program 2-1

numT1 = [10];
den1 =[1 2 10];
num2 = [5];
den2 =[1 5];

[num, den] = series(num1,den1,num2,den2);
printsys(num,den)

num/den =

50
sN3 + 7s”A2 + 20s + 50

[num, den] = parallel(num1,den1,num2,den2);
printsys(num,den)

num/den =

5s7"2 + 20s + 100
sA3 4+ 7s”A2 + 20s + 50

[num, den] = feedback(num1,den1,num2,den2);
printsys(num,den)

num/den =

10s + 50
sA3 4+ 7s7A2 4+ 20s + 100

Automatic Controllers. An automatic controller compares the actual value of
the plant output with the reference input (desired value), determines the deviation, and
produces a control signal that will reduce the deviation to zero or to a small value.
The manner in which the automatic controller produces the control signal is called
the control action. Figure 2—6 is a block diagram of an industrial control system, which

Automatic controller

Error detector

|
|
|
|
|

[ Output

Amplifier 3| Actuator »| Plant P
| |
| |
1 1
| Actuating |
| error signal 1
O J

Sensor [
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