ALMUSTAQBAL UNIVERSITY COLLEGE

Medical Laboratories Techniques Department

Stage : First year students

Subject : General chemistry -A - Lecture 4

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Molarity of liquids:

The molarity of liquids Can be determined by applying the following formula:

Molarity of liquid (M) = $\frac{sp.gr x \left(\frac{w}{w}\right)\% x1000}{Mwt}$ Specific gravity (Sp.gr) = $\frac{density of substance}{density of water}$ Specific gravity (Sp.gr) = $\frac{d_{substance}}{d_{H_20}}$ (sp.gr $\approx d_{substance}$) as $d_{H_20} = 1$

Example:

Calculate the molarity of of HNO₃ (63 g/mol) solution of $70.5 \left(\frac{w}{w}\right) \%$ and its specific gravity(sp.gr) is 1.420.

Solution:

Molarity (M) =
$$\frac{sp.gr x \left(\frac{w}{w}\right)\% x 1000}{Mwt}$$

$$\mathbf{M} = \frac{1.420 x \left(\frac{70.5}{100}\right) x \, 1000}{63.0} = \frac{1.420 x \, 70.5 x \, 10}{63.0} = \mathbf{15.9} \, \mathbf{M}$$

Example :

Calculate the molarity of NaOH (40 g/mol) solution of $50 \left(\frac{w}{w}\right) \%$ knowing that its specific gravity(sp.gr) is 1.525.

Solution:

Molarity (M) =
$$\frac{sp.gr x \left(\frac{w}{w}\right)\% x 1000}{Mwt}$$

Molarity (M) =
$$\frac{1.525 x \left(\frac{50}{100}\right) x 1000}{40} = \frac{1.525 x 50.5 x 10}{40} = 19.06 \text{ M}$$

Exercises:

- 1. Calculate the molarity of perchloric acid HClO₄ (100.05 g/mol) solution of $71\left(\frac{w}{w}\right)$ % knowing that its specific gravity(sp.gr) is 1.67.
- 2. Calculate the molarity of H₃PO₄ (98 g/mol) solution of $86\left(\frac{w}{w}\right)\%$ knowing that its specific gravity(sp.gr) is 1.71.

Example:

Describe the preparation of (100 mL) of (6.0 M) HCl (36.5 g /mole) from its concentrated solution that is 37.1 % (w/w)% and has specific gravity (sp.gr) of (1.18).

Solution:

 $\mathbf{M}_{\mathrm{HCl}} = \frac{sp.gr\,x\,\left(\frac{w}{w}\right)\%\,x\,\mathbf{1000}}{Mwt}$

 $\mathbf{M}_{\rm HCl} = \frac{1.18 \, x \frac{37.1}{100} \, x \, 1000}{36.5}$

 $\mathbf{M}_{\rm HCl} = \frac{1.18 \, x \, 37.1 \, x \, 10}{36.5} = \mathbf{12.0} \ \mathbf{M}$

The Molarity of the concentrated acid is 12.0M

الان نذهب الى قانون التخفيف لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (١٠٠ مللتر في هذا المثال) وكمايلي:

No. of moles of Conc. solution = No. of moles of dil. Solution

No. of mmoles of Conc. solution = No. of mmoles of dil. Solution

 $\mathbf{M}_{\text{conc.}} \mathbf{V}_{\text{conc.}} = \mathbf{M}_{\text{dil.}} \mathbf{V}_{\text{dil.}}$

 $12.0 \text{ x V}_{\text{conc}} = 6.0 \text{ x } 100$

$$V_{conc} = \frac{6.0 \ x \ 100}{12} = 50 \ mL.$$

Then 50 mL of concentrated acid is to be diluted to 100 mL to give 6 M solution

Example:

Describe the preparation of 500 mL of $3.00 \text{ M H}_2\text{SO}_4$ (98 g/mol) from the commercial reagent that is 93% H₂SO₄ (w/w) and has a specific gravity of 1.830.

Solution:

1. We have to calculate the concentration of the original conc. Solution

 $\mathbf{M}_{\text{H2SO4}} = \frac{sp.gr x \left(\frac{w}{w}\right)\% \% x 1000}{M.wt}$

 $\mathbf{M}_{\text{H2SO4}} = \frac{1.830 \, x \frac{93}{100} \, x \, 1000}{98}$

M _{H2SO4} =
$$\frac{1.830 \times 93 \times 10}{98}$$
 = 17. 37 M

لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (٥٠٠ مللتر في هذا المثال) نطبق قانون التخفيف التالي:

 $\mathbf{M}_{\text{conc.}} \mathbf{V}_{\text{conc.}} = \mathbf{M}_{\text{dil.}} \mathbf{V}_{\text{dil.}}$

 $17.37 \text{ x V}_{\text{conc}} = 3.0 \text{ x } 500$

 $V_{conc} = \frac{3.0 x 500}{17.37} = 86.36 \text{ mL}.$

Then 86.36 mL of concentrated acid is to be diluted to 500 mL to give 3 M solution.

Exercise:

Describe the preparation of 250 mL of 2 M acetic acid CH₃COOH (60 g/mol) solution from its concentrated solution that is 99.5 $\left(\frac{w}{w}\right)$ % and its specific gravity(sp.g) is 1.05.

Calculation of Normality of liquids

Normality of liquid(N) =
$$\frac{sp.gr x \left(\frac{w}{w}\right)\% x 1000}{eq.wt}$$

Example:

Describe the preparation of 500 mL of $3.00 \text{ N H}_2\text{SO}_4(98 \text{ g/mol})$ from the commercial reagent that is 96% H₂SO₄ (w/w) and has a specific gravity of 1.840.

Solution:

Normality (N H2SO4) = $\frac{sp.gr x \left(\frac{w}{w}\right)\% x 1000}{eq.wt}$

eq.wt = $\frac{Mwt}{\eta}$

For $H_2SO_4 \eta = 2$ then

eq.wt = $\frac{98}{2}$ = 49

Normality (N _{H2SO4}) =
$$\frac{1.840 x \frac{96}{100} x 1000}{49}$$

Normality (N H2SO4) = $\frac{1.840 \times 96 \times 10}{49}$ = 36.04 N

The Normality of the concentrated acid is 36.04 N

لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (٠٠٠ مللتر في هذا المثال) نطبق قانون التخفيف التالي:

 $N_{conc.} V_{conc.} = N_{dil.} V_{dil.}$

 $36.04 \text{ x V}_{\text{conc}} = 3.0 \text{ x } 500$

 $V_{\text{conc}} = \frac{3.0 \ x \ 500}{36.04} = 41.62 \text{ mL}.$

Then 41.62 mL of concentrated acid is to be diluted to 500 mL to give 3 N solution.

Example:

A solution of 6.42 (w/w)% of Fe(NO₃)₃ (241.86 g/mol) has a specific gravity of 1.059. Calculate:

(a) the molar concentration of this solution.

(b) the mass in grams of Fe(NO₃)₃ contained in each liter of this solution

Answer:

a) To calculate the molar concentration of the solution

$$\mathbf{M}_{\text{Fe}(\text{NO3})3} = \frac{\text{sp.gr} \mathbf{x} \left(\frac{w}{w}\right)\% \mathbf{x} \mathbf{1000}}{\text{Mwt}}$$

M _{Fe(NO3)3} =
$$\frac{1.059x \frac{6.42}{100} x \, 1000}{241.86} = 0.281$$

(c) the mass in grams of $Fe(NO_3)_3$ contained in each liter of this solution(i.e: the concentration of solution in g / L).

Weight (g) = Molarity x volume(liter) x M.wt

Weight = 0.281 x 1 liter x 241.86 = 67.96 g

The concentration of solution in g / L = 67.96 g / L

Example:

A 12.5% (w/w) aqueous solution of NiCl₂ (129.61 g/mol) has specific gravity of 1.149. Calculate:

- (a) the Molarity of NiCl₂ in this solution.
- (b) the molar concentration of Cl⁻ in the solution.
- (c) the mass in grams of NiCl₂ contained in 500 mL of this solution.

Answer:

(a) the Molarity of NiCl₂ in this solution

$$\mathbf{M}_{\text{NiCl2}} = \frac{sp.gr\,x\left(\frac{W}{W}\right)\%\ x\,1000}{Mwt}$$

$$\mathbf{M}_{\text{NiCl2}} = \frac{1.149 \, x \frac{6.42}{100} \, x \, 1000}{129.61} = 0.569 \, \text{M}$$

(b) the molarity of Cl^{-} concentration in the solution.

NiCl2 \rightarrow Ni²⁺+2Cl⁻Each 1 mole gives1 mole2 moleMolarity of Cl⁻ = 2 xMolarity of NiCl2Molarity of Cl⁻ = 2 x0.569 = 1.138 M

(d) the mass in grams of NiCl₂ contained in 500 mL of this solution. Weight (g) = Molarity x volume(liter) x M.wt Weight = 0.569 x ($\frac{500}{1000}$) L x 129.61 = 36.87 g

Example:

A solution was prepared by dissolving 327.8 mg of Na₃PO₄ (163.9 g/mol) in sufficient water to give 750 mL . Calculate:

A) The Molarity and Normality of the solution

B) the Molar concentration of Na⁺ in the solution.

Answer:

A) The Molarity and Normality of the solution

 $Molarity(M) = \, \frac{wt_{(g)}\,x\,1000}{M.wt\,x\,V_{mL}} \label{eq:Molarity}$

Weight of Na₃PO₄ (g) = $\frac{327.8 mg}{1000}$ = 0.3278 g

 $Molarity(M) = \frac{0.3278 \text{ x } 1000}{163.9 \text{ x } 750} = 0.00267 \text{ M} = 2.67 \text{ x } 10^{-3} \text{ M}$

Normality (N) = Molarity(M) x η

 $(\eta) = \Sigma$ [no. of cations x its valency (cation charge)]

For Na₃PO₄ (η) = Σ [3 Na⁺ x (+1)] = 3 Normality (N) = 2.67 x 10⁻³ x 3 = 8.01 x 10⁻³ N

B) the Molar concentration of Na^+ in the solution.

 $Na_3PO_4 \rightarrow 3 Na^+ + PO_4^{3-}$

1 mole 3 mole

Molarity of $Na^+ = 3 \times Molarity$ of Na_3PO_4

Molarity of Na⁺ = $3 \times 2.67 \times 10^{-3} = 8.01 \times 10^{-3} M$

Exercise:

A solution was prepared by dissolving 32.92 g of $K_3Fe(CN)_6$ (329.24 g/mol) in sufficient water to give 700 mL . Calculate:

A) The Molarity and Normality of the solution

B) the Molar concentration of K^+ in the solution.