2.2 Resultant of Coplanar Parallel Force System

Parallel forces can be in the same or in opposite directions. The magnitude of the parallel resultant force R is the magnitude of the algebraic sum of the given forces.

$\uparrow^{+} R=\sum F_{i}$
$R=-F_{1}-F_{2}+F_{3}-F_{4}$

The position of the resultant can be determined according to the principle of moments.
${ }^{\perp} M_{R}=R \cdot d=\sum F_{i} \cdot d_{i}$
$R \cdot d=F_{1} \cdot d_{1}+F_{2} \cdot d_{2}-F_{3} \cdot d_{3}+F_{4} \cdot d_{4}$

Example No. 1: For the force system shown in figure, determine the magnitude and position of the resultant with respect to point A.

Solution:
$M_{\text {couple }}=165 \times 2=330 \mathrm{kN} . \mathrm{m}$

$\rightarrow^{+} R=\sum F_{i}$
$R=200+50-250-150$
$R=-150 k N=150 k N \leftarrow$
${ }^{+} R \cdot d=\sum F_{i} \cdot d_{i} \quad($ Respect to $A)$
$-150 \cdot d=200 \times 5+50 \times 2-250 \times 7-150 \times 4+330$
$d=\frac{-920}{-150}$
$d=6.13 m$

Example No. 2: Find the value of P and F so that the four forces shown in Figure produce an upward resultant of 300 N acting at 4 m from point A .

Solution:
$\uparrow^{+} R=\sum F_{i}$
$300=-100+P-F+200$
$P=200+F$

${ }^{+} R \cdot d=\sum F_{i} \cdot d_{i} \quad($ respect to $A)$
$-300 \times 4=100 \times 0-P \times 2+F \times 5-200 \times 7$
$-2 P+5 F-200=0$

Sub eq. (1) in eq. (2) to get:
$-2(200+F)+5 F-200=0$
$F=200 N \downarrow$,

Sub value of (F) in eq. (1) to get;
$P=400 N \uparrow$

Problems:

1. A parallel force system acts on the cantilever beam shown in Figure. Determine the magnitude and position of the resultant.

Answer: $R=110 N \downarrow, \quad d=6 m$ from point A
2. Compute the magnitude and position of the resultant of the two forces acting on a beam with respect to point A as shown in Figure.

Answer: $R=80 N \leftarrow, \quad d=40 \mathrm{~mm}$ up point A
3. The resultant of three parallel loads (one is missing in Figure below) is 13.6 kN acting up at 3 m to the right of A. Compute the magnitude and position of the missing load.

Answer: $F=31.4 \mathrm{kN} \downarrow$ at 2.48 m to the right of A

