## ALMUSTAQBAL UNIVERSITY COLLEGE

Medical Laboratories Techniques Department
Stage : First year students
Subject : General chemistry - Part A Lecture 2
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR


## Methods of expressing concentrations:

Concentration represents the amount of dissolved substance (solute) per unit amount of solution, It can be expressed by :

1) Chemical units : equivalent mass - Molar mass(mole).
2) Physical units : mass - volume

## 1. Chemical Units:

## The mole:

Is a unit for the amount of a chemical species, always associated with a chemical formula and represents Avogadro's number ( $6.023 \times 10^{23}$ ) of particles(molecules, atoms or ions) represented by that formula .

Avogadro's number is the number of atoms in 1 mole of an element or number of ions in 1 mole of the ionic form or number of molecules in 1 mole of a molecules

1 mole of an element contains Avogadro's number ( $6.023 \times 10^{23}$ ) of atoms
1 mole of ions contains Avogadro's number ( $6.023 \times 10^{23}$ ) of ions .
1 mole of molecules contains Avogadro's number ( $6.023 \times 10^{23}$ ) of molecules.

## Example:

Calculate the number of moles of $3.01 \times 10^{25}$ water molecules.

## Solution:

Number of moles $=\frac{\text { number of molecules }}{\text { Avogadros number }}$
Number of moles of $\mathrm{H}_{2} \mathrm{O}=\frac{3.01 \times 10^{25}}{6.023 \times 10^{23}}=50$ moles

## Example:

Calculate the number of molecules in 0.02 mole of $\mathrm{CO}_{2}$.

## Solution:

Number of molecules $=$ number of moles x Avogadro's number
Number of molecules $=0.02 \times 6.023 \times 10^{23}=1.2 \times 10^{22} \quad \mathrm{CO}_{2}$ molecules

## Exercise :

Calculate the number of moles of each of the following.
a) $3.01 \times 10^{23} \mathrm{~N}_{2}$ molecules
b) $4.82 \times 10^{24}$ iron atoms

Molar Mass :Is the mass in grams of 1 mole of the substance, it can be calculated by summing the atomic masses of all the atoms appearing in a chemical formula.

## Molar mass (M.wt) $=\sum$ atomic molar mass

Example :- The molar mass for formaldhyde $\mathrm{CH}_{2} \mathrm{O}$ is : $(\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16)$
$M . w t_{\mathrm{CH}_{2} \mathrm{O}}=\sum(1$ mole carbon +2 mole hydrogen +1 mole oxygen $)$ atom
$M . w t_{C H_{2} O}=1 \times 12 g+2 \times 1.0 g+1 \times 16.0 g$
$=30.0 \mathrm{~g} /$ mole of $\mathrm{CH}_{2} \mathrm{O}$

Example :- Molar mass of glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ :
M.wt $c_{C_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=\sum(6$ mole carbon +12 mole hydrogen +6 mole oxygen $)$
M. $w t_{C_{6} H_{12} O_{6}}=6 \times 12.0+12 \times 1.0+6 \times 16.0=180 \mathrm{~g} / \mathrm{mole}$


Example :- Molar mass of $\mathrm{Na}_{2} \mathrm{SO}_{4} .7 \mathrm{H}_{2} \mathrm{O}:(\mathrm{Na}=23, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{H}=1)$
$\operatorname{Mwt}\left(\mathrm{Na}_{2} \mathrm{SO}_{4} .7 \mathrm{H} 2 \mathrm{O}\right)=\sum(2$ mole $\mathrm{Na}+1$ mole $S+4$ mole $O)+7(2 \mathrm{~mol} \mathrm{H}+1$ mol O $)$
M.wt $\left(\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\right)=(2 \times 23)+(1 \times 32)+(4 \times 16)+7(2 \times 1+1 \times 16)=268 \mathrm{~g} / \mathrm{mol}$

## Important Relations:

The Molar mass (M.wt) is expressed by $\mathbf{g} / \mathbf{m o l e}$ or $\mathbf{m g} / \mathbf{m m o l e}$
$\operatorname{No.} \operatorname{moles}(\mathrm{n})=\frac{\mathrm{wt}(\mathrm{g})}{\mathrm{M} \cdot \mathrm{wt}(\mathrm{g})}$
Mole $=10^{3} \mathrm{mmole} \quad, \quad \mathrm{m}$ mole $=\frac{1}{1000}$ mole $=10^{-3} \mathrm{~mole}$

## Exercise :

a) What is the mass of 0.04 mole of $\mathrm{N}_{2}(28 \mathrm{~g} / \mathrm{mol})$ ?
b) What is the number of moles in 5.6 g of $\mathrm{PCl}_{5}(208 \mathrm{~g} / \mathrm{mol})$ ?
c) Calculate the molar mass of the gas which has 22.54 g in 0.23 mole.

Example: How many grams of $\mathrm{Na}^{+}(\mathrm{M} . \mathrm{wt}=23 \mathrm{~g} / \mathrm{mol})$ are contained in
$(25.0 \mathrm{~g})$ of $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{M} . \mathrm{wt}=142.0 \mathrm{~g} / \mathrm{mol})$ ?

## Solution:

$\underset{\text { 1mole }}{\mathrm{Na}_{2} \mathrm{SO}_{4}} \longrightarrow \underset{2 \text { mole }}{2 \mathrm{Na}^{+}}+\underset{\text { 1mole }}{\mathrm{SO}_{4}{ }^{2-}}$

No. of moles $\left(n_{\mathrm{Na}_{2} \mathrm{SO}_{4}}\right)=\frac{\mathrm{Wt}_{(\mathrm{g})} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{M} . \mathrm{Wt}_{(\mathrm{g})} \mathrm{Na}_{2} \mathrm{SO}_{4}}=\frac{25.0}{142.0}=0.176$ moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
No. of moles of $\mathrm{Na}^{+}\left(n_{\mathrm{Na}^{+}}\right)=$Number of moles $\mathrm{Na}_{2} \mathrm{SO}_{4} \times \mathrm{No}$. of atoms of $\mathrm{Na}^{+}$
No. of moles of $\mathrm{Na}+=\frac{\text { massof Na2SO4 }}{\text { Molar mass of Na2SO4 }} \times \mathrm{No}$. of Na atoms in $\mathrm{Na}_{2} \mathrm{SO}_{4}$
No. of moles of $\mathrm{Na}^{+}\left(n_{\mathrm{Na}^{+}}\right)=0.176 \times 2=0.352$ moles $\mathrm{Na}^{+}$
mass $\mathrm{Na}^{+}(\mathrm{g})=$ No. of moles $\mathrm{Na}^{+} \mathrm{x}$ molar mass of $\mathrm{Na}^{+}(\mathrm{g} / \mathrm{mol})$
mass $\mathrm{Na}^{+}(\mathrm{g})=0.352 \times 23=8.10(\mathrm{~g}) \mathrm{Na}^{+}$
or
mass of $\mathrm{Na}^{+}=\frac{\text { massof Na2SO4 }}{\text { Molar mass of Na2SO4 }} \times$ No. of Na atoms x molar mass of Na
mass of $\mathrm{Na}^{+}=\frac{25 \mathrm{~g}}{142 \mathrm{glmol}} \times 2 \mathrm{Na}^{+}$atoms $\times 23 \mathrm{~g} / \mathrm{mol}=8.10 \mathrm{~g}$

Mass of Element $(\mathrm{g})=\frac{\text { mass of compound }(\mathrm{g})}{\text { Molar mass of compound }\left(\frac{g}{\text { mol }}\right)} \times$ No. of atoms $\mathbf{x}$ molar mass of atom
Examples;

1. No. of moles of $\mathrm{Na}^{+}\left(n_{\mathrm{Na}^{+}}\right)$in NaCl is $=1 \times \mathrm{No}$. of moles of NaCl
$\mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
1 mole 1 mole
2. No. of moles of $\mathrm{Na}^{+}\left(n_{\mathrm{Na}^{+}}\right)$in $\mathrm{Na}_{3} \mathrm{PO}_{4}$ is $=3 \times \mathrm{No}$. of moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$
$\mathrm{Na}_{3} \mathrm{PO}_{4} \longrightarrow 3 \mathrm{Na}^{+}+\mathrm{PO}_{4}{ }^{3-}$
1 mole
3 mole

## Exercise :

1. No. of moles of $\mathrm{K}^{+}\left(n_{\mathrm{k}^{+}}\right)$in $\mathrm{K}_{2} \mathrm{SO}_{4}=$ ?
2. No. of moles of $\mathrm{K}^{+}\left(n_{\mathrm{k}^{+}}\right)$in $\mathrm{KNO}_{3}=$ ?
3. No. of moles of $\mathrm{Mg}^{2+}\left(n_{\mathrm{Mg}^{2+}}\right)$ in $\mathrm{MgSO}_{4}=$ ?
4. No. of moles of $\mathrm{Fe}^{3+}\left(n_{\mathrm{Fe} 3+}\right)$ in $\mathrm{FeCl}_{3}=$ ?
5. No. of moles of $\mathrm{Cl}^{-}\left(n_{\mathrm{Cl}-}\right)$ in $\mathrm{FeCl}_{3}=$ ?

## Exercises:

1. Find out the mass of $\mathrm{Ca}(40 \mathrm{~g} / \mathrm{mol})$ in 20 g of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(310 \mathrm{~g} / \mathrm{mol})$.
2. Calculate the mass of $\mathrm{Na}(23 \mathrm{~g} / \mathrm{mol})$ in 25 g of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$. $(286 \mathrm{~g} / \mathrm{mol})$
3. Calculate the mass of $\mathrm{Na}(23 \mathrm{~g} / \mathrm{mol})$ in 25 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}(106 \mathrm{~g} / \mathrm{mol})$

## Molar concentration (M):

Molarity (M): Number of moles of solute per liter of solution

$$
\operatorname{Molarity}(M)=\frac{\text { number of moles of solute }}{\text { volume of solution(liter) }}
$$

or
Number of millimoles ( $\mathbf{m}$ moles) of solute per milliter ( $\mathbf{m L}$ ) of solution.

Or

$$
\operatorname{Molarity}(\mathbf{M})=\frac{\text { number of mmole of solute }}{\text { volume of solution }(\mathbf{m L})}
$$

$\operatorname{Molarity}(M)=\frac{\text { number of moles of solute }}{\text { volume of solution(liter) }}=\frac{\text { number of mmole of solute }}{\text { volume of solution }(\mathrm{mL})}$

## Example:

What is $\left(\mathrm{C}_{\mathrm{NaCl}}\right)$ the concentration of $\mathrm{NaCl}(58.5 \mathrm{~g} / \mathrm{mol})$ in grams per milliliter ( $\mathrm{g} / \mathrm{mL}$ ) for its 0.25 M aqueous solution?

Solution:
$0.25 \mathrm{M}=0.25 \mathrm{~mol} / \mathrm{L} \equiv 0.25 \mathrm{mmol} / \mathrm{mL}=0.25 \times 10^{-3} \mathrm{~mole} / \mathrm{mL}$
$\mathrm{C}_{\mathrm{NaCl}}$ in $(\mathrm{g} / \mathrm{mL})=0.25 \times 10^{-3}$ mole $/ \mathrm{mL} \times \operatorname{M.wt}(\mathrm{g} / \mathrm{mol})=\mathrm{g} / \mathrm{mL}$
$\mathrm{C}_{\mathrm{NaCl}}$ in $(\mathrm{g} / \mathrm{mL})=0.25 \times 10^{-3} \mathrm{~mole} / \mathrm{mL} \times 58.5 \mathrm{~g} / \mathrm{mol}=0.0146 \mathrm{~g} / \mathrm{mL}$

## Example :

Calculate $\left(\mathrm{C}_{\mathrm{K}+}\right)$ the concentration of potassium ion ( $39.1 \mathrm{~g} / \mathrm{mol}$ ) in grams per liter for a 0.3 M aqueous solution of KCl (potassium chloride).

Solution:
$\mathrm{KCl} \rightarrow \mathrm{K}^{+}+\mathrm{Cl}^{-}$
$0.3 \mathrm{M} \mathrm{KCl}=0.3 \mathrm{~mol} / \mathrm{LKCl}=0.3 \mathrm{~mol} / \mathrm{L} \mathrm{K}^{+}$
Each mol of $\mathrm{K}^{+}=39.1 \mathrm{~g}=\mathbf{M} . \mathrm{wt}$
Then $\mathrm{C}_{\mathrm{K}+}$ in $\mathrm{g} /$ Liter $=\mathbf{0 . 3} \mathbf{~ m o l} /$ liter $\times 39.1 \mathbf{g} / \mathbf{m o l}=11.7 \mathrm{~g} /$ liter

Molarity(M) Calculations:
$\operatorname{Molarity}(M)=\frac{\operatorname{No.of~moles}}{\operatorname{volume}(L)}=\frac{\frac{\mathrm{wt}(\mathrm{g})}{\mathrm{M} . \mathrm{wt}}}{\mathrm{V}_{\mathrm{L}}}$
$\operatorname{Molarity}(\mathbf{M})=\frac{\mathbf{w t}_{(\mathrm{g})}}{\mathrm{M} . \mathrm{wt} \mathrm{x} \mathbf{V}_{\mathbf{L}}}$
$\left(V_{L}=\frac{V_{m L}}{1000}\right)$
$\operatorname{Molarity}(M)=\frac{\mathrm{wt}_{(\mathrm{g})}}{\operatorname{M.wt~x} \frac{\mathrm{VmL}}{\mathbf{1 0 0 0}}}$
$\operatorname{Molarity}(M)=\frac{\mathbf{w t}_{(\mathrm{g})} \times 1000}{\text { M. wt X } \mathbf{V}_{\mathbf{m L}}}$

Example: Calculate the molar concentration of $\mathrm{KNO}_{3}$ aqueous solution that contains ( $\mathbf{2 . 0 2} \mathbf{g}$ ) of $\mathrm{KNO}_{3}(\mathrm{M} . \mathrm{wt}=101 \mathrm{~g} / \mathrm{mole})$ in $(\mathbf{2 . 0} \mathrm{L})$ of solution.

Solution:
$\operatorname{Molarity}(M)=\frac{\mathrm{wt}_{(\mathrm{g})}}{\mathrm{M.wt} \mathrm{x} V_{\mathrm{L}}}=\frac{2.02(\mathrm{~g})}{101 \times 2.0 \mathrm{~L}}=0.10 \mathrm{M}$
or
$\operatorname{Molarity}(\mathrm{M})=\frac{\mathrm{wt}_{(\mathrm{g})} \times 1000}{\mathrm{M} . \mathrm{wt} \times \mathrm{V}_{\mathrm{mL}}}=\frac{2.02_{(\mathrm{g})} \times 1000}{101 \times 2000 \mathrm{~mL}}=0.10 \mathrm{M}$
Analytical Molarity: The number of moles of solute in one liter of solution or number of mmole in one mililiter . e.g: a sulfuric acid $(98 \mathrm{~g} / \mathrm{mol})$ solution that has an analytical concentration of $(1.0 \mathrm{M})$ can be prepared by dissolving (1.0 mole) or ( $\mathbf{9 8} \mathrm{g}$ ) of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in water and dilution to exactly ( $\mathbf{1 . 0} \mathrm{L}$ ). $\left\{\right.$ Molarity $\left.(M)=\frac{1 \text { mole }}{1 L}=1 \mathrm{M}\right\}$

Example: Describe the preparation of $(\mathbf{2} .00$ liter) of $(\mathbf{0} .18 \mathrm{M})$ aqueous solution of $\mathbf{B a C l}_{2}$ from solid $\mathrm{BaCl}_{2} \mathbf{2 H}_{2} \mathrm{O}(244.3 \mathrm{~g} / \mathrm{mole})$.

Solution:
$\mathrm{BaCl}_{2} \mathbf{2} \mathbf{2 H}_{2} \mathrm{O} \rightarrow \mathrm{BaCl}_{\mathbf{2}}+\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}$
1mole 1mole 2mole
Each ( $\mathbf{1} \mathbf{m o l e} \mathrm{BaCl}_{2} \mathbf{2} \mathbf{2 H}_{\mathbf{2}} \mathbf{O}$ ) gives ( 1 mole $\mathbf{B a C l}_{2}$ ).

As Molarity $(\mathbf{M})=\frac{\text { No.of moles }}{\text { volume }(\mathbf{L})}$
No. of moles = molarity $\mathbf{M x}$ volume ( L )
for 2 liter of $0.18 \mathrm{M} \mathrm{BaCl}_{2}$ solution we have
No. moles $\mathrm{BaCl}_{2}$ in Solution $=0.18$ mole $\frac{\mathrm{BaCl}_{2}}{\mathrm{~L}} \times 2.00 \mathrm{~L}=0.36 \mathrm{~mole}\left(\mathrm{BaCl}_{2}\right)$
Then No. of moles $\mathbf{B a C l}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ needed $=$ No. of moles $\mathrm{BaCl}_{2}=\mathbf{0 . 3 6}$ moles
Mass (g) = No.of moles $x$ molar mass

The solution is prepared by dissolving 87.95 g of $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ in water and complete the volume to 2.00 L

Example:
Describe the preparation of $500 \mathbf{m L}$ of $\mathbf{0 . 0 7 4} \mathbf{M ~ C l}^{\text {- }}$ solution from solid $\mathbf{B a C l}_{2}$ ( $208 \mathrm{~g} / \mathrm{mol}$ ).

## Solution:

$\mathbf{B a C l}_{2} \rightarrow \mathrm{Ba}^{2+}+2 \mathrm{Cl}^{-}$
1 mole 2 moles
No. of moles = Molarity (mol / liter) $\mathbf{x}$ Volume (Liters)
$\mathrm{V}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{mL}}}{1000}=\frac{500}{1000}=0.5 \mathrm{~L}$
moles $\mathrm{Cl}^{-}=\mathbf{0 . 0 7 4} \mathbf{~ m o l ~ C l}{ }^{-} / \mathbf{L} \times 0.5 \mathrm{~L}=\mathbf{0 . 0 3 7}$ moles $\mathrm{Cl}^{-}$
No .moles $\mathrm{BaCl}_{2}$ needed $=\frac{1}{2}\left(\right.$ No. of moles of $\left.\mathrm{Cl}^{-}\right)$
No .moles $\mathrm{BaCl}_{2}$ needed $=\frac{0.037}{2}=0.0185 \mathrm{~mol}$
mass $\mathrm{BaCl}_{2}=$ moles $\mathrm{BaCl}_{\mathbf{2}} \mathbf{x} \mathbf{M w t}(\mathbf{2 0 8})$
mass $\mathrm{BaCl}_{2}=\mathbf{0 . 0 1 8 5} \times 208=3.848 \mathrm{~g}$
Then the required solution is prepared by dissolving 3.848 g of $\mathrm{BaCl}_{2}$ in water and dilute to $0.500 \mathrm{~L}(500 \mathrm{~mL})$.

Exercises:

1. Calculate the molarity of a solution prepared by dissolving 2.3 g of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)(46 \mathrm{~g} / \mathrm{mol})$ in 3.5 L of distilled water.
2. What is the mass of chloride [ $\left.\mathrm{Cl}^{-}\right](35.5 \mathrm{~g} / \mathrm{mol})$ present in $\mathrm{NaCl}(58.8$ $\mathrm{g} / \mathrm{mol}$ ) solution prepared by dissolving 4.39 g of salt in distilled water to get a solution of $\mathbf{2 5 0} \mathbf{~ m L}$ ?
3. Describe the preparation of 500 mL of $0.0740 \mathrm{M} \mathrm{Cl}^{-}$aqueous solution from solid $\mathrm{CaCl}_{2} \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O } ( 1 4 7 \mathrm { g } / \mathrm { mol } ) \text { . }}$
4. Calculate the weight in grams of solid $\mathrm{CaCl}_{2}(111 \mathrm{~g} / \mathrm{mol})$ required to prepare $\mathbf{2 5 0} \mathbf{~ m L}$ of $\mathbf{0 . 0 4} \mathrm{M}$ aqueous solution of $\mathbf{C a}^{2+}$.
5. Calculate the weight in grams of solid $\mathrm{NaCl}(58.5 \mathrm{~g} / \mathrm{mol})$ required to prepare 250 mL of 0.04 M aqueous solution of $\mathrm{Na}^{+}$.
6. Describe the preparation of 700 mL of $\mathbf{0 . 0 7 4 0} \mathrm{M} \mathrm{Cl}^{-}$solution from solid $\mathbf{B a C l}_{2}(\mathbf{2 0 8} \mathrm{~g} / \mathrm{mol})$.
