3.2 Equilibrium of Coplanar Concurrent Force system

The resultant of coplanar concurrent force system is:
$R=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}}$
To achieve the equilibrium, the resultant must be equal to zero (i.e. $\mathrm{R}=0$), then:
$R_{x}=0 \quad \Rightarrow \quad \sum F_{x}=0$
$R_{y}=0 \quad \Rightarrow \quad \sum F_{y}=0$
Only two unknowns can be determined

Example No. 1: Determine the force (F) in the figure below which must be applied to ring A in order to keep the 300 N cylinder B in equilibrium.

Solution:

Draw F.B.D. for Ring (A) and cylinder (B):

at cylinder (B):
$\rightarrow^{+} \sum F_{x}=0$
$N \times \frac{3}{5}-T_{1} \times \frac{4}{5}=0$
$N=1.333 T_{1}$

$\uparrow^{+} \sum F_{y}=0$
$N \times \frac{4}{5}+T_{1} \times \frac{3}{5}-300=0$
$1.333 T_{1} \times \frac{4}{5}+T_{1} \times \frac{3}{5}=300$
$\therefore T_{1}=180 \mathrm{~N}$
at Ring (A):
$\uparrow^{+} \sum F_{y}=0$
$-180 \times \frac{3}{5}+T_{2} \times \frac{12}{13}=0$
$\therefore T_{2}=117 \mathrm{~N}$

$\rightarrow^{+} \sum F_{x}=0$
$180 \times \frac{4}{5}+117 \times \frac{5}{13}-F=0$
$\therefore F=189 N \leftarrow$ answer

Example No. 2: The 290 N pipe is supported at A by a system of five-cords. Determine the force in each cord for equilibrium.

Solution:

Draw F.B.D. for system:

From F.B.D. of Ring A:
$\uparrow^{+} \sum F_{y}=0$
$T_{A B} \sin 60-290=0 \quad \rightarrow \quad T_{A B}=\frac{290}{\sin 60}$
$\therefore T_{A B}=334.86 \mathrm{~N}$ answer
$\rightarrow^{+} \sum F_{x}=0$
$T_{A E}-334.86 \times \cos 60=0$
$T_{A E}=167.43 \mathrm{~N}$ answer

From F.B.D. of Ring B:

$\uparrow^{+} \sum F_{y}=0$
$T_{B D} \times \frac{3}{5}-334.86 \times \sin 60=0$
$\therefore T_{B D}=483.33 \mathrm{~N}$ answer
$\rightarrow^{+} \sum F_{x}=0$
$483.33 \times \frac{4}{5}+334.86 \times \cos 60-T_{B C}=0$
$T_{B C}=554.094 \mathrm{~N}$ answer

Problem:

1. Determine the tension developed in each cord required for equilibrium of the 20 kg lamp.

Answer: $T_{D E}=392.4 \mathrm{~N}, T_{C D}=339.83 \mathrm{~N}, T_{C B}=274.62 \mathrm{~N}, T_{C A}=242.73 \mathrm{~N}$
2. A system of cables connected together at A required for equilibrium of the 20 kg ball D as shown in the figure. Determine the largest dimension d so that the force in cable $A C$ is zero and $F=100 \mathrm{~N}$.

Answer: $d=2.42 \mathrm{~m}$
3. Determine the force in each rod for equilibrium of the 250 N crate.

Answer: $T_{A B}=500 N, T_{C B}=433.33 N$

