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Chapter 8:  Main Memory
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Logical View of Segmentation
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Segmentation Architecture 

 Logical address consists of a two tuple:
<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each 
table entry has:
 base – contains the starting physical address where the 

segments reside in memory
 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment 
table’s location in memory

 Segment-table length register (STLR) indicates number of 
segments used by a program;
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Segmentation Architecture (Cont.)

 Protection
 With each entry in segment table associate:

 validation bit = 0 ⇒ illegal segment
 read/write/execute privileges

 Protection bits associated with segments; code sharing 
occurs at segment level

 Since segments vary in length, memory allocation is a 
dynamic storage-allocation problem

 A segmentation example is shown in the following diagram
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Segmentation Hardware
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Paging

 Physical  address space of a process can be noncontiguous; 
process is allocated physical memory whenever the latter is 
available
 Avoids external fragmentation
 Avoids problem of varying sized memory chunks

 Divide physical memory into fixed-sized blocks called frames
 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages
 Keep track of all free frames
 To run a program of size N pages, need to find N free frames and 

load program
 Set up a page table to translate logical to physical addresses
 Backing store likewise split into pages
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Address Translation Scheme

 Address generated by CPU is divided into:
 Page number (p) – used as an index into a page table which 

contains base address of each page in physical memory
 Page offset (d) – combined with base address to define the 

physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset
p d

m - n n
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Paging Hardware

P is used to get frame no.
F combined with displacement (offset) (d) to reach physical memory
Main different between segmentation is there is no protection 
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Paging Model of Logical and  Physical Memory

Translation from 0 to frame number 1
Translation from 1 to frame number 4
Translation from 2 to frame number 3
Translation from 3 to frame number 7
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Paging Example

n=2 and m=4   32-byte memory and 4-byte pages

Translation from 0 to frame number 5 in Pmem.
Translation from 1 to frame number 6 in Pmem.
Translation from 2 to frame number 1 in Pmem.
Translation from 3 to frame number 2 in Pmem.
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Free Frames

Before allocation After allocation
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Implementation of Page Table

 Page table is kept in main memory
 Page-table base register (PTBR) points to the page table
 Page-table length register (PTLR) indicates size of the page

table
 In this scheme every data/instruction access requires two memory

accesses
 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use of a
special fast-lookup hardware cache called associative memory
or translation look-aside buffers (TLBs)
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Implementation of Page Table (Cont.)

 Some TLBs store address-space identifiers (ASIDs) in each 
TLB entry – uniquely identifies each process to provide 
address-space protection for that process
 Otherwise need to flush at every context switch

 TLBs typically small (64 to 1,024 entries)
 On a TLB miss, value is loaded into the TLB for faster access 

next time
 Replacement policies must be considered
 Some entries can be wired down for permanent fast 

access
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Associative Memory

 Associative memory – parallel search 

 Address translation (p, d)
 If p is in associative register, get frame # out
 Otherwise get frame # from page table in memory

Page # Frame #
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Paging Hardware With TLB

TLB is outside the main memory
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Effective Access Time

 Associative Lookup = ε time unit
 Can be < 10% of memory access time

 Hit ratio = α
 Hit ratio – percentage of times that a page number is found in the

associative registers; ratio related to number of associative
registers

 Consider α = 80%, ε = 20ns for TLB search, 100ns for memory access
 Effective Access Time (EAT)

EAT = (1 + ε) α + (2 + ε)(1 – α)
= 2 + ε – α                

 Consider α = 80%, ε = 20ns for TLB search, 100ns for memory access
 EAT = 0.80 x 100 + 0.20 x 200 = 120ns

 Consider more realistic hit ratio ->  α = 99%, ε = 20ns for TLB search,
100ns for memory access
 EAT = 0.99 x 100 + 0.01 x 200 = 101ns
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Memory Protection

 Memory protection implemented by associating protection bit 
with each frame to indicate if read-only or read-write access is 
allowed
 Can also add more bits to indicate page execute-only, and 

so on
 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the 
process’ logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

 Or use page-table length register (PTLR)
 Any violations result in a trap to the kernel
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