
Department of Computer Engineering
Techniques (Stage: 4)

Advance Computer Technologies
Dr.: Hussein Ali Ameen

hussein_awadh@mustaqbal-college.edu.iq

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 8: Main Memory

8.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

8.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Segmentation Architecture

 Logical address consists of a two tuple:
<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each
table entry has:
 base – contains the starting physical address where the

segments reside in memory
 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment
table’s location in memory

 Segment-table length register (STLR) indicates number of
segments used by a program;

8.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Segmentation Architecture (Cont.)

 Protection
 With each entry in segment table associate:

 validation bit = 0 ⇒ illegal segment
 read/write/execute privileges

 Protection bits associated with segments; code sharing
occurs at segment level

 Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

 A segmentation example is shown in the following diagram

8.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Segmentation Hardware

8.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging

 Physical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available
 Avoids external fragmentation
 Avoids problem of varying sized memory chunks

 Divide physical memory into fixed-sized blocks called frames
 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages
 Keep track of all free frames
 To run a program of size N pages, need to find N free frames and

load program
 Set up a page table to translate logical to physical addresses
 Backing store likewise split into pages

8.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Address Translation Scheme

 Address generated by CPU is divided into:
 Page number (p) – used as an index into a page table which

contains base address of each page in physical memory
 Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset
p d

m - n n

8.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging Hardware

P is used to get frame no.
F combined with displacement (offset) (d) to reach physical memory
Main different between segmentation is there is no protection

8.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging Model of Logical and Physical Memory

Translation from 0 to frame number 1
Translation from 1 to frame number 4
Translation from 2 to frame number 3
Translation from 3 to frame number 7

8.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

Translation from 0 to frame number 5 in Pmem.
Translation from 1 to frame number 6 in Pmem.
Translation from 2 to frame number 1 in Pmem.
Translation from 3 to frame number 2 in Pmem.

8.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Free Frames

Before allocation After allocation

8.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation of Page Table

 Page table is kept in main memory
 Page-table base register (PTBR) points to the page table
 Page-table length register (PTLR) indicates size of the page

table
 In this scheme every data/instruction access requires two memory

accesses
 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use of a
special fast-lookup hardware cache called associative memory
or translation look-aside buffers (TLBs)

8.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation of Page Table (Cont.)

 Some TLBs store address-space identifiers (ASIDs) in each
TLB entry – uniquely identifies each process to provide
address-space protection for that process
 Otherwise need to flush at every context switch

 TLBs typically small (64 to 1,024 entries)
 On a TLB miss, value is loaded into the TLB for faster access

next time
 Replacement policies must be considered
 Some entries can be wired down for permanent fast

access

8.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Associative Memory

 Associative memory – parallel search

 Address translation (p, d)
 If p is in associative register, get frame # out
 Otherwise get frame # from page table in memory

Page # Frame #

8.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Paging Hardware With TLB

TLB is outside the main memory

MSI-PC
Highlight

MSI-PC
Highlight

8.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Effective Access Time

 Associative Lookup = ε time unit
 Can be < 10% of memory access time

 Hit ratio = α
 Hit ratio – percentage of times that a page number is found in the

associative registers; ratio related to number of associative
registers

 Consider α = 80%, ε = 20ns for TLB search, 100ns for memory access
 Effective Access Time (EAT)

EAT = (1 + ε) α + (2 + ε)(1 – α)
= 2 + ε – α

 Consider α = 80%, ε = 20ns for TLB search, 100ns for memory access
 EAT = 0.80 x 100 + 0.20 x 200 = 120ns

 Consider more realistic hit ratio -> α = 99%, ε = 20ns for TLB search,
100ns for memory access
 EAT = 0.99 x 100 + 0.01 x 200 = 101ns

MSI-PC
Sticky Note
Hit = وصول واحد
Miss= وصولين الاول بحث ثم
 miss
 الثاني هو الوصول الى الذاكرة

MSI-PC
Sticky Note
hit مره واحدة
miss مرتين زمن

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

8.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Memory Protection

 Memory protection implemented by associating protection bit
with each frame to indicate if read-only or read-write access is
allowed
 Can also add more bits to indicate page execute-only, and

so on
 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the
process’ logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

 Or use page-table length register (PTLR)
 Any violations result in a trap to the kernel

	Advance Computer Technologies 2nd Semester (Lecture 1) - Copy
	1 - Copy - Copy
	Slide Number 1

	Advance Computer Technologies 2nd Semester (Lecture 2 && 3)
	Chapter 8: Main Memory
	Logical View of Segmentation
	Segmentation Architecture
	Segmentation Architecture (Cont.)
	Segmentation Hardware
	Paging
	Address Translation Scheme
	Paging Hardware
	Paging Model of Logical and Physical Memory
	Paging Example
	Free Frames
	Implementation of Page Table
	Implementation of Page Table (Cont.)
	Associative Memory
	Paging Hardware With TLB
	Effective Access Time
	Memory Protection

