Department of Computer Engineering
Techniques (Stage: 4)
Advance Computer Technologies
Dr.: Hussein Ali Ameen
hussein_awadh@mustagbal-college.edu.iq

Updating main memory

[1

Write-through ‘
CPU Cache Main

Writes to both at the memory

same time.
Write-back .

| CPU Cache Main

Cache controller will memory
write to main memory

at a convenient time. '

Figure 22-9. Methods of Updating Main Memory

Cache coherency

[n systems in which main memory 1 accessed by more than one processor
(DMA or multiprocessors), it must be ensured that cache always has the most recent
data and is not in possession of old (or stale) data. In other words, If the data n main
memory has been changed by one processor, the cache of that processor will have
the copy of the latest data and the stale data in the cache memory 1s marked as dirty
(stale) before the processor uses it. In this way, when the processor tries to use the
stale data, 1t is mformed of the situation. In cases where there 1S more than one
processor and all share a common set of data in matn memory, there must be a way
to ensure that no processor uses stale data. This is called cache coherency.

Cache replacement policy

What happens if there is no room for the new data in cache memory and the
cache controller needs to make room before it brings data in from main memory”
This depends on the cache replacement policy adopted. In the LRU (least recently
used) algorithm, the cache controller keeps account of which block of cache has
been accessed (used) the least number of times, and when it needs room for the new
data, this block will be swapped out to main memory or flushed if a copy of it already
exists in main memory. This is similar to the relation between virtual memory and
main memory. The other replacement policies are to overwrite the blocks of data in
cache sequentially or randomly, or use the FIFO (first in, first out) policy. Depending
on the computer’s design objective and its intended use, any of these replacement
policies can be adopted.

Cache fill block size

If the information asked for by the CPU is not in cache and the cache
controller must bring it in from main memory, how many bytes of data are brought

in whenever there is a miss? [f the block size is too large (let’s say 500 bytes), it
will-be t00-slow Since the main memery 15 accessed normally with IOrZ WS, AT

the other extreme, if the block is too small, there will be too many cache misses,
There must be a middle-of-the-road approach. The block size transfer from the main
memory to CPU (and simultaneous copy to cache) varies in different computers,
anywhere between 4 and 32 bytes. In cache controllers used with 386/486 machines,
the block size is 32 bytes. This is called the 8-line cache refill policy, where each
line 15 4 bytes of the 32-bit data bus. Advances in IC fabrication have allowed putting

some cache on the CPU chip. This on-chip cache is called L1 (level 1) cache whereas
cache outside the CPU 1s called L2 (level 2)

Y —

&

S0P

0. A cache refill policy of 4 lines refers to

Review Questions

Cache 1s made of (DRAM, SRAM).

From which does the CPU asks for data first, cache or main memory?
Rank the following from fastest to slowest as far as the CPU is concerned.
(a) main memory (b) register (¢) cache memory

In fully associative cache of 512 depth, there willbe comparisons for each
data request.

Which cache organization requires the least number of comparisons?

A 4-way set associative organization requires COmparisons.

What does write-through refer to?

Which one increases the bus traffic, write-through or write-back?

What does LRU stand for, and how 1s it used?

UI-JM»JN:—‘

More about pipelining

In the 8085 there was no pipelining. At any given moment, it either fetched
or it executed. It could not do both at the same time. In the 8085, while the buses
were fetching the instructions (opcodes) and data, the CPU was sitting idle, and in
the same way, when the CPU was executing instructions, buses were sitting idle.
However, in the 8086/88 the fetch and execute were performed in parallel by two
sections inside the CPU called the BIU (bus interface unit) and EU (execution unit).
The 8086 has an internal queue where it keeps the opcodes that are prefetched and
waiting for the execution unit to process them. In the sequence of instructions, if
there is a jump (JMP, INZ, INC, and so on) or CALL, the prefetched buffer (queue)
is flushed and the bus interface unit of the CPU brings in instructions from the target
location while the the execution unit waits for the new instruction. Since the
introduction of the 8086 in 1978, microprocessor designers have come to rely more

and more on the concept of pipelining to increase the processing power of the CPU.
The next development was to expand the concept of a pipeline to the three stages
of fetch, decode, and execute. In the 486, the pipeline stage is broken down even
further to 5 stages as follows:

fetch (prefetch)

. decode 1

. decode 2

. execute

. register write-back

Due to such a large number of addressing modes in the 80x86, a two-stage
decoder is used for the calculation and protection check of operand addresses. The
register write-back is the stage where the operand is finally delivered to the register.
For example, in the instruction "ADD EAX,[EBX+ECX*8+200]", afteritis fetched,
the two decoding stages are responsible for calculating the physical address of the
source operand, checking for a valid address, and getting it into the CPU. There it
is added together with EAX during the execution stage, and finally, the addition
result 1s written into EAX, the destination register. Figure 23-3 shows the 486
pipeline.

This concludes the discussion of the 80486 microprocessor. For the per-
formance comparison of the 8086, 286, 386, and 486, see Chapter 8. The perform-
ance comparison of the 386 and 486 and Pentium is shown in the next section.

i1 PF|D1|D2|EX|WB

i2 PF (D1 |D2 | EX|WB

i3 PF|D1|D2|EX|WB

i4 PF | D1|D2|EX|WB

15 PF|D1|D2 | EX | WB

PF = prefetch
D1 = decode 1
D2 = decode 2
EX = execute
WB = write back

Each stage takes 1 clock,
but when the pipeline is full
each instruction will execute
in a single clock.

Figure 23-3. 486 Pipeline Stages

Pipelining Design Techniques

There exist two basic techniques to
increase the instruction execution rate of a
pProcessor.

These are to increase the clock rate, thus

decreasing the instruction execution time,

or alternatively to increase the number of
instructions that can be executed

simultaneously.

Pipelining Design Techniques

* A possible division is to consider instruction

fetch (F), instruction decode (D), operand fetch (F),
instruction execution (E), and store of results (S) as
the subtasks needed for the execution of an
Instruction.

* the success of a pipeline depends upon dividing

the execution of an instruction among a number of
subunits (stages), each performing part of the
required operations.

Simple Instruction Cycle

Fetch Instruction

Decode Instruction

Fetch Data

Process Data

Write Data

a Read the instruction from
main memory

a Decode to query the
requested action

0 Get the data required for
the requested action

0 Perform the requested
data processing

0 Store the result of the
processed data

e A true Stream of Instructions

— Let’s assume no branches for now

Running a Processor

Fl

DI

FD

PD

WD

Fl

DI

FD

PD

WD

Fl

DI

FD

PD |

Time

1 cycle

Q Each step is carried out by a different unit
¢+ During one cycle only one unit activated

¢ Others are idle

Optimization

Time

FI | DI |FD|PD WD| FI | DI |FD|PD |WD
FI | DI |FD|PD WD| FI | DI | FD | PD |WD
FI | DI |FD|PD WD
FI | DI |FD|PD WD
FI | DI |FD|PD WD

Pipeline stage
1 cycle

e Make use of otherwise unused units

— Concept is called ,Pipelining”

— Think of assembly lines

	First Page
	1 - Copy - Copy
	Slide Number 1

	Advance Computer Technologies 2nd Semester (Lecture 6,7,8,9) - Copy (2)
	Updating main memory
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Pipelining Design Techniques
	Pipelining Design Techniques
	Simple Instruction Cycle
	Running a Processor
	Optimization

