

Ministry of Higher Education and Scientific Research AI-Mustaqbal University College Department of Technical Computer Engineering

Computer Network 3rd Stage
Lecturer: Dr. Hussein Ali Ameen

Q1/ Show the encapsulation process at the network and Data link layer at each node in the following cases:
\mathbf{a} - If \mathbf{A} send a message to \mathbf{Q}
b-If \mathbf{P} send a message to \mathbf{Q}

a-Answer.
Through LAN1 (from A/50 to R/75)

Upper layer	Data		
Network layer	A Q	Data	
Data link layer	7550	A Q	Data

Through LAN2 (from T/44 to K/66)

Upper layer	Data		
Network layer	A Q	Data	
Data link layer	6644	A Q	Data

Through LAN3 (from F/99 to Q/60)

Upper layer	Data		
Network layer	A Q	Data	
Data link layer	6099	A Q	Data

b-Answer.
Through LAN2 (from P/77 to K/66)

Upper layer	Data				
Network layer	P Q	Data			
Data link layer	66	77	P Q	Data	T

Through LAN3 (from F/99 to Q/60)

Upper layer	Data				
Network layer	P	Q	Data		
Data link layer	60	99	P Q	Data	T

Q2/ The encapsulation process at the Data link layer Through LAN2 only If (Y) send a message to (\mathbf{Z}) are

a-

Upper layer	Data			
Network layer	R Y	Data		
Data link layer	6545	R Y	Data	T

b-

Upper layer	Data			
Network layer	V E	Data		
Data link layer	6545	V E	Data	T

c-

Upper layer	Data			
Network layer	R Y	Data		
Data link layer	3050	R Y	Data	T

d-

Upper layer	Data			
Network layer	V E	Data		
Data link layer	3050	R Y	Data	T

Answer: a

Upper layer	Data			
Network layer	R Y	Data		
Data link layer	6545	R Y	Data	T

Packet loss

Four sources of packet delay

$$
d_{\text {nodal }}=d_{\text {proc }}+d_{\text {queue }}+d_{\text {trans }}+d_{\text {prop }}
$$

1. Processing
2. Queuing
3. Transmission
4. Propagation

Nodal delay

$$
d_{\text {nodal }}=d_{\text {proc }}+d_{\text {queue }}+d_{\text {trans }}+d_{\text {prop }}
$$

- $d_{\text {proc }}=$ processing delay dependes on time checking error, packet forwarding algorithm.
- $\mathrm{d}_{\text {queue }}=$ queuing delay
- depends on congestion and packet on the link.
- $d_{\text {trans }}=$ transmission delay
$-=L / R$, significant for low-speed links
- $d_{\text {prop }}=$ propagation delay
- The propagation speed depends on the physical medium of the link (that is, fibre optics, twisted-pair copper wire, and so on $=d / s$

$$
\begin{aligned}
& \text { transmission delay }=\boldsymbol{d}_{\text {trans }} \\
& d_{\text {trans }}=\frac{\text { length of the backet (bit) }}{\text { link transmission rate }(\text { bps })}=\text { bit } \times \frac{\text { sec }}{\text { bit }}=s e c \\
& d_{\text {trans }}=\frac{L(\text { (bit })}{R(\text { bit sec) })}=\sec \\
& \text { propagation delay }=\boldsymbol{d}_{\text {prop }} \\
& d_{\text {prop }}=\frac{\text { Distance }(m)}{\text { Velocity }(m / s)}=m \times \frac{\text { sec }}{m}=\mathrm{sec} \\
& d_{\text {prop }}=\frac{d(m)}{v(m / \text { sec })}=\sec \\
& v\left(\frac{m}{\text { sec }}\right)=3 \times 10^{8} \times 0.7=2.1 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad 0.7 \text { delay in fiberobtic }
\end{aligned}
$$

Q/ Suppose a 128 kbps point to point link is set up between earth and a rover on moon. The distance from the earth to moon (when they are the closest together) is approximately 385000 km , and data travels over the link at the speed of light $3 \times 10^{8} \mathbf{~ m} / \mathrm{sec}$.
a) Calculate the Propagation Delay of the link.
b) A camera on the rover takes pictures of its surroundings and sends these to the earth. Calculate the transmission Delay to reach Mission Control on Earth? Assume that each image is 5 Mb in size.
Ans.
a) $\quad d_{\text {prop }}=\frac{\text { Distance }(m)}{\operatorname{Velocity}(m / s)}$

$$
d_{\text {prop }}=\frac{d(m)}{v(m / s)}=\frac{385000 \times 10^{3}}{3 \times 10^{8}}=1.2833 \mathrm{sec}
$$

b) $\quad d_{\text {trans }}=\frac{\text { length of the packet (bit) }}{\text { link transmission rate (bps) }}$

$$
d_{\text {trans }}=\frac{L(\text { bit })}{R(\text { bit } / \mathrm{sec})}=\frac{5 \times 10^{6}}{128 \times 10^{3}}=39.0625 \mathrm{sec}
$$

H.W.

Q/ Suppose a 100 kbps point to point link is set up between earth and a rover on mars. The distance from the earth to mars (when they are the closest together) is approximately 55 Gm , and data travels over the link at the speed of light $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
a) Calculate the Propagation Delay of the link.
b) A camera on the rover takes pictures of its surroundings and sends these to the earth. Calculate the transmission Delay to reach Mission Control on Earth? Assume that each image is 25 Mb in size.

