Department of Computer Engineering
Techniques (Stage: 4)
Advance Computer Technologies
Dr.: Hussein Ali Ameen
hussein_awadh@mustagbal-college.edu.iq




INTEL'S PENTIUM

Intel put 3.1 million transistors on a single piece of silicon using a 273-pin
PGA package to design the next generation of 80x86. It is called Pentium instead
of 80586. The name Pentium was chosen to distinguish it from clones because it is
hard to copyright a number such as 80586. There are 3 ways available to microproc-
essor designers to increase the processing power of the CPU.

. Increase the clock frequency of the chip. One drawback of this method is that the
higher the frequency, the more the power dissipation and the more difficult and
expensive the design of the microprocessor and motherboard.

2. Increase the number of data buses to bring more information (code and data) into
the CPU to be processed. While in the case of DIP packaging this option was very
expensive and unrealistic, in today’s PGA packaging this is no longer a problem.

3. Change the internal architecture of the CPU to overlap the execution of more
instructions. This requires a ot of transistors. There are two trends for this option,
superpipeline and superscalar. In superpipelining, the process of fetching and




INTEL'S PENTIUM

64-bit
Bus
Interface

Code Cache Branch
Prediction
Prefetch
Buffers
¥ Pipelined
. . Floating-Point
U-pipe V-pipe Unitg
Integer Integer
ALU ALU
Register Multiply
Set
Add
Data Cache Divide




Features of the Pentium

Feature 1

In the Pentium, the external data buses are 64-bit, which will bring twice
- as much code and data into the CPU as the 486. However, just like the 386 and 486,
Pentium registers are 32-bit. Bringing in twice as much as information can work

only if there are two
execution units inside
the processor, and this
1s exactly what Intel
has done. The Pentium
uses 64 pins, DO - D63,
to access external
memory banks, which
are 64 bits wide. DO -
D7 is the least signifi-
cant byte, and D56 -
D63 is the most signifi-
cant byte. Accessing 8
bytes of external data
bus requires 8 BE (byte
enable) pins, BEO -
BE7, where BEO is for
DO - D7, BE1 for DS -
D135, and so on. This is
shown in Figure 23-5
and Table 23-2.

Table 23-2: Pentium_Byte Enable Signals

Byte En-

.able Signal Associated Data Bus Signals .
BEO# _|DO0-D7 (byte 0, the least significant)
BE1# 'D8-D15 (byte 1)

BE2# D16-D23 (byte 2) -
BE3# D24-D31 (byte 3)

BE4# D32-D39 (byte 4) N
/\BES# ' D40-D47 (byte 5)

BE6# D48-D55 (byte 6) o
'BE7# D56-D63 (byte 7, the most significant)

(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1993)



While in the 486 there were four DP (data parity) pins, one for each of the
4 bytes of the data bus, in the Pentium there are 8 DP pins to handle the 8 bytes of
data pins DO - D63. The Pentium has A31 to A3 for the address buses. This is shown
in Figure 23-6. Just like the 486, the Pentium also has the A20M (A20 Mask) input
pin for the implementation of HMA (high memory area).

| D63 - DO

PENTIUM™ PROCESSOR 64-BIT MEMORY

|A31 -A3,BE7#-BEO#

Figure 23-6. Pentium Address Buses
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1993)



Features of the Pentium

Feature 2

The Pentium has a total of 16K bytes of on-chip cache: 8K is for code and
the other 8K is for data. In the 486 there is only 8K of on-chip cache for both code
and data. The data cache can be configured as write-back or write-through, but to
prevent any accidental writing into code cache, the 8K of code cache is write
protected. In other words, while the CPU can read or write into the data cache, the
code cache is write protected to prevent any inadvertent corruption. Of course, when
there is a cache miss for code cache, the CPU brings code from external memory
and stores (writes) it in the cache code, but no instruction executing in the CPU can
write anything into the code cache. The replacement policy for both data and code
caches is LRU (least recently used).

Both the on-chip data and code caches are accessed internally by the CPU
core simultaneously. However, since there is only one set of address buses, the
external cache containing both data and code must be accessed one at a time and
not simultaneously. Some CPUs, notably RISC processors, use a separate set of
address and data pins (buses) for the data and another set of address and data buses
for the code section of the program. This is called Harvard architecture and will be
discussed in the next section. The Pentium accesses the on-chip code and data
caches simultaneously using Harvard architecture, but not the secondary (external)
off-chip cache and data. The Pentium’s cache organization for both the data and
code caches is 2-way set associative. Each 8K is organized into 128 sets of 64 bytes,

which means 27 x 26 =213 =8192 = 8K bytes. Each set consists of 2 lines of cache,
and each line is 32 bytes wide.




Features of the Pentium

Feature 3

The on-chip math coprocessor of the Pentium is many times faster than the
one on the 486. It has been redesigned to perform many of the instructions, such as
add and multiply, ten times faster than the 486 math coprocessor. In microprocessor
terminology, the on-chip math coprocessor is commonly referred to as a floating
point unit (FPU) while the section responsible for the execution of integer-type data
is called the integer unit (IU). The FPU section of the Pentium uses an 8-stage
pipeline to process instructions, in contrast to the 5-stage pipeline in the integer unit.

i1 PF | D1 | D2 | Ex|WB

i2 PF [ D1 | D2 | EX|wB

i3 PF | D1 | D2 |[EX|WB

i4 PF | D1 | D2 | EX|WB

i5 PF|D1|D2|EX|wWB

i6 PF | D1 | D2 | EX|WB

i7 PF | D1 | D2 | EX|wB

i8 PF | D1|D2|EX|wB

i9 PF | D1 |D2]|EX|WB
i10 PF | D1 | D2 | EX|WB

Figure 23-7. Pentium Pipeline



Features of the Pentium

Feature 4

Another unique feature ofthe Pentium is its superscalar architecture. A large
number of transistors were used to put two execution units inside the Pentium. As
the instructions are fetched, they are issued to these two execution units. However,
1ssuing two instructions at the same time to different execution units can work only
if the execution of one does not depend on the other one, in other words, if there is
no data dependency. As an example, look at the following instructions.

ADD EAX,EBX ;add EBX to EAX

NOT EAX ;take 1’s complement EAX
INC DI ;increment the pointer
MOV [DI],EBX ;move out EBX

In the above code, the ADD and NOT instructions cannot be issued to two
execution units since EAX, the destination of the first instruction, is used immedi-
ately by the second instruction. This is called read-after-write dependency since the
NOT instruction wants to read the EAX contents, but it must wait until after the
ADD is finished writing it into EAX. The problem is that ADD will not write into
EAX until the last stage of the pipeline, and by then it is too late for the pipeline of
the NOT instruction. This prevents the NOT instruction from advancing in the
pipeline, therefore causing pipeline to be stalled until the ADD finishes writing and
then the NOT instruction can advance through the pipeline. This kind of register
dependency raises the clock count from one to two for the NOT instruction. What
if the instructions are rescheduled, as follows?

ADD EAX,EBX ;add EBX to EAX
INC DI ;increment the pointer
NOT EAX ;take 1’s complement of EAX

MOV [DI,EBX ;move out EBX




Features of the Pentium

If they are rescheduled as shown above, each can be issued to separate
execution units, allowing parallel execution of both instructions by two different
units of the CPU. Since the clock count for each instruction is one, just like the 486,
having two execution units leads to executing two instructions by pairing them
together, thereby using only one clock count for two instructions. In the case of the
above program, if it is run on the Pentium it will take only 2 clocks instead of 4 as
is the case of 486 microprocessor, assuming that two instructions are paired together.
This reordering of instructions to take advantage of the two internal execution units
of the Pentium is the job of the compiler and is called instruction scheduling.
Currently, compilers are being equipped to do instruction scheduling to remove
dependencies. The role of the compiler to reschedule instructions in order to take
advantage of the superscalar capability of the Pentium must be emphasized. The
process of issuing two instructions to the two execution units is commonly referred
to as instruction pairing. The two integer execution units of the Pentium are called
"U" and "V" pipes. Each has 5 pipeline stages. While the U pipe can execute any of
the instructions in the 80x86 family, the V pipe executes only simple instructions
such as INC, DEC, ADD, SUB, MUL, DIV, NOT, AND, OR, EXOR, and NEG.
These simple instructions are executed in one clock as long as the operands are
"REG,REG" or "REG,IMM" and have no register dependency. For example, in-
structions such as "ADD EAX,EBX", "SUB ECX,2000", and "MOV EDX,1500"
are simple instructions requiring one clock, but not "ADD DWORD PTR
[EBX+EDI+500],EAX", which needs 3 clocks.




Features of the Pentium

Feature 5

Branch prediction is another new feature of the Pentium. In Chapter 8, we
discussed the branch penalty associated with jump and CALL instructions. The
penalty for jumping is very high for a high-performance pipelined microprocessor
such as the Pentium. For example, in the case of the JNZ instruction, if it jumps, the
pipeline must be flushed and refilled with instructions from the target location. This
takes time. In contrast, the instruction immediately below the JNZ is already in the
pipeline and is advancing without delay. The Pentium processor has the capability
to predict and prefetch code from both possible locations and have them advanced
through the pipeline without waiting (installing) for the outcome of the zero flag.
The ability to predict branches and avoid the branch penalty combined with the
instruction pairing can result in a substantial reduction in the clock count for a given
program. See Example 23-6.



Features of the Pentium

Feature 6

As discussed in Chapter 21, the 386/486 has a page size of 4K for page
virtual memory. The Pentium provides the option of 4K or 4M for the page size.
The 4K page option makes it 386 and 486 compatible, while the 4M page size option
allows mapping of a large program without any fragmentation. The 4M page size
in the Pentium reduces the frequency of a page miss in virtual memory.

Feature 7

As discussed in Chapter 21, the 386 (and 486) has only 32 entries for the
TLB (translation lookaside buffer), which means that the CPU has instant knowl-
edge of the whereabouts of only 128K of code and data. If the desired code or data
is not referenced in the TLB, the CPU must go through the long process of converting
the linear address to a physical address. The Pentium has two sets of TLB, one for
code and one for data. For data, the TLB has 64 entries for 4K pages. This means
that the CPU has quick access to 256K (64 x 4K =256K) of data. The TLB for the
code is 32 entries of 4K page size. Therefore, the CPU has quick access to 128K of
code at any give time. Combining the TLBs for the code and data, the Pentium has
quick access to 384K (128 +256) of code and data before it resorts to updating the
TLB for the page miss. Contrast this to 128K for the 486. If the page size of 4M 1s
chosen, the TLB for the data has 8 entries while the TLB for the code has 32 entries.




Features of the Pentium

Feature 8

The Pentium has both burst read and burst write cycles. This 1s in contrast
to the 486, which has only the burst read. This means that in the 486 any write to
consecutive doubleword locations must be performed with the normal 2 clock
cycles. This is not the case in the Pentium.

The Pentium has features that lend themselves to implementation of multi-
ple microprocessors (multiprocessors) working together. It also has features called
error detection and functional redundancy to preserve and ensure data and code
Integrity.




Pentium Die Photo

CLOCK DRIVER

INSTRUCTION = 3,100,000 transistors
— = 296 mm?
B = 60 MHz
—camenlle-==lll = |ntroduced in 1993

BUS INTERFACE INSTRUCTION

LOGIC - SUPPORT — 18t superscalar
Ty e I Implementation of |A32

INTEGER
EXECUTION
UNITS

BRANCH
FPREDICTION
LOGIC

P
FLOATING

MP LOGIC




Intel’s overdrive technology

To increase both the internal and external clock frequency of the CPU
requires faster DRAM, high-speed motherboard design, high-speed peripherals, and
efficient power management due to a high level of power dissipation. As a result,
the system is much more expensive. To solve this problem, Intel came up with what
is called overdrive technology, also referred to as clock doubler and tripler. The idea
of a clock doubler or tripler is to increase the internal frequency of the CPU while
the external frequency remains the same. In this way, the CPU processes code and
data internally faster while the motherboard costs remain the same. For example,
the 486D X2-50 uses the internal frequency of 50 MHz but the external frequency
by which the CPU communicates with memory and peripherals is only 25 MHz.
This allows the instructions stored in the queue of 486 to be executed at twice the
speed of fetching them from the system buses. With the advent of the 32- and 64-bit

external buses, on-chip cache, and the burst cycle reading (reading 16 bytes in only
5 clocks), the amount of code and data fetched into the queue of the CPU 1s sufficient
to keep the execution unit of CPU busy even if it is working with twice or three
times the speed of external buses. This is the reason that Intel 1s designing processors
with clock triplers. In that case, if the CPU’s external buses are working at the speed
of 33 MHz, the CPU works at 99 MHz speed. The design of a system board of 33
MHZz costs much less than that of a 100-MHz system board. With slower memory
and peripherals one can get instruction throughput of three times the bus throughput.
As designers move to wider data buses, such as 128-bit-wide buses, the use of clock
doublers and triplers is one way of keeping the system board cost down without
sacrificing system throughput. The Intel 486DX4 1s an example of a clock-tripler

CPU. Note that "X4" does not mean that the external frequency is 4 times the internal
frequency.



Pentium Pro is both superpipelined and superscalar

As mentioned above, in the Pentium Pro all x86 instructions are converted
into micro-ops with triadic formats before they are processed. This conversion
allows an increase in the pipeline stages with little difficulty. Intel uses a 12-stage
pipeline for the Pentium Pro. In contrast to the 5-pipestage of the Pentium, although
each pipestage of the 12-pipestage Pentium Pro performs less work, there are more
stages. This means that in the Pentium Pro, more instructions can be worked on and
finished at a time. The Pentium Pro with its 12-stage pipeline is referred to as
superpipelined. Since it also has multiple execution units capable of working in
parallel, it is also superscalar. Another advantage of the 12-pipestage is that it can
achieve a higher clock rate (frequency) with the given transistor technology. This is
one reason that the earliest Pentium chips had a frequency of only 60 MHz while
the earliest Pentium Pro has a frequency of 150 MHz. Intel also used what is called
out-of-order execution to increase the performance of the Pentium Pro. This is
explained next.



What is out-of-order execution?

In Pentium architecture, when one of the pipeline stages is stalled, the prior
stages of fetch and decode are also stalled. In other words, the fetch stage stops
fetching instructions if the execution stage is stalled, due for example to a delay in

memory access. This dependency of fetch and execution has to be resolved in order
to increase CPU performance. That is exactly what Intel has done with the Pentium
Pro and is called decoupling the fetch and execution phases of the instructions. In
the Pentium Pro, as x86 instructions are fetched from memory they are decoded
(converted) into a series of micro-ops, or RISC-type instructions, and placed into a
pool called the instruction pool. See Figure 23-9. This fetch/decode of the instruc-
tions 1s done in the same order as the program was coded by the programmer (or
compiler). However, when the micro-ops are placed in the instruction pool they can
be executed in any order as long as the data needed 1s available. In other words, 1f
there is no dependency, the instructions are executed out of order, not in the same
order as the programmer coded them. In the case of the Pentium Pro, the dis-
patch/execute unit schedules the execution of micro-ops from the instruction pool
subject to the availability of needed resources and stores the results temporarily.
Such a speculative execution can go 20 - 30 instructions deep into the program. It
is the job of the retire unit to provide the results to the programmer’s (visible)
registers (e.g., EAX, EBX) according to the order the instructions were coded.
Again, it is important to note that the instructions are fetched in the same order that
they were coded, but executed out of order if there is no dependency, but ultimately
retired in the same order as they were coded. This out-of-order execution can boost
performance in many cases. Look at Example 23-8.



Instruction
cache

——

Fetch/
decode
unit

Dispatch/
execute
unit

Instruction
Pool

Retire unit

Figure 23-9. Pentium Pro Instruction Execution




e sviiauivy LAty Gayes. LOOK at kxample 23-8,

ExamEle 23-8

For the following code, indicate the instructions that can be executed out of order in the Pentium Pro.

11) LOAD (R2), R4 ;LOAD R4 FROM MEMORY POINTED ATBYR2
12) ADD R3,R4,R7 :R3+R4--->R7

13) ADD R6,R8,R10 ;R6+R8--->R10

i4) SUB R5.R1,R9 ;R5-R1--->R9

15) ADD Ré6,1R12 ;R6+1---->R12

Solution:

Instruction i2 cannot be executed until the data is brought in from memory (either cache or main
memory DRAM). Therefore, i2 is dependent on il and myst wait unti! the R4 register has the data,
However, instructions 13, i4 and i5 can be executed out of order and in paralle] with each other since
there is no dependency among them. After the execution of 12, all the instructions 12, 13, 14, and 15
can be retired instantly since they all have been executed already. This would not be the case if these
nstructions were executed in the Pentium since its pipeline would be stalled due to the memory

access for R4. In that case, instructions 13, 14, and i5 could not even be fetched let alone decoded and
executed.




Table 2}-4: Com__parison o_f Pentil}n_l and Pentium Pro

Feature I Pentium Pentium Pro |
Yearinmodueed | 193 1995
\Number of transistors ” 3.3 million 5.5 million |
Numberofpins | o m 387

\External databus | 64 bits 64 bits
|Addressbus 3 bits 36 bits

|Physical memory (maximum) | 4GB 64 GB
Vitwalmemoy . 64TB __64TB

Data types (registersizes) | 8,16,32bits 8,16,32bits
Cache (L) | | 16K bytes (data 8K, code 8K) 16K bytes (data 8K, code 8K)
(Cache@) . Extemal 256KB/SI2KB |
Superscalar B 2-Way 3-Way

'Number of execution units | 3 5 |
Branch prediction - yes yes
!%Qut-of-order execution L . no _yes l




Examgle 23-9

The following x86 code (a) sets the pointer for three different arrays, and the counter value,

(b) gets each element of ARRAY _1, adds a fixed value of 100 to it, and stores the result in AR-
RAY 2, (c) complements the element and stores it in ARRAY 3. Analyze the execution of the code
in light of the out-of-order execution and branch prediction capabilities of the Pentium Pro.

i) MOV EBX,ARRAY 1 ;LOAD POINTER

i2) MOV ESLARRAY 2 :LOAD POINTER

i3) MOV EDLARRAY 3 ;LOAD POINTER

i4) MOV ECX,COUNT ;LOAD COUNTER

i5) AGAIN: MOV EAX[EBX] ;LOAD THE ELEMENT
i6) ADD EAX.100 :ADD THE FIX VALUE
i7) ADD EBX,4 -UPDATE THE POINTER
i8) MOV [ESIL,EAX .STORE THE RESULT
i9) ADD ESL4 -UPDATE THE POINTER
i10) NOT EAX .COMPLEMENT THE RESULT
i11) MOV [EDIJEAX  ;AND STORE IT

i12) ADD EDL4 -UPDATE THE POINTER
i13) LOOP AGAIN .STAY IN THE LOOP
i14) MOV AX4C00H  :EXIT

i15) INT 21H




Solution:

The fetch/decode unit fetches and converts instructions into micro-ops. Since there is no dependency
for instructions i1 through i5, they are dispatched, executed and retired except for i3. Notice that the
pointer values are immediate values, therefore, they are embedded into the instruction when the
fetch/decode unit gets them. Now i5 is a memory fetch which can take many clocks, depending on
whether the needed data is located in cache or main memory. Meanwhile i6, 18, 110, and 111 must
wait until the data is available. However i7, 19, 112 can be executed out of order knowing that the up-
dated values of pointers EBX, EDI, ESI are kept internally until the time comes when they will be
committed to the visible registers by the retire unit. More importantly, the LOOP instruction is pre-
dicted to go to the target address of AGAIN and i3, i6, ... are dispatched once more for the next itera-
tion. This time the memory fetch will take very few clocks since in the previous data fetch, the CPU
read at least 32 bytes of data using the Pentium Pro 64-bit (8 bytes) data bus and the burst read mode,
transferring into the CPU 4 sets of 8-byte data. This process will go on until the last round of the
LOOP instruction where ECX becomes zero and falls through, At this time due to misprediction, all
the micro-instructions belonging to instructions i3, i6, 17, ... (start of the loop) are removed and the
whole pipeline restarts with instructions belonging to 114,115, and so on.



Figure 1-1 The Complete Pentium II and Pentium lll Processors Architecture

L2 cache

Sgstem bus

Bus Interface Unit

L1 instruction
cache
Fetch v T Store

Fetch & Decode Unit . :
(In order unit) Eﬂe’"r&m;:; Unit
+Fetches instructions o : :

i i «Retires instructions in order
+Decodes instructions to pOPs B .
«Performs branch prediction Writes results fo registers/memory

| I
\}@un Poollreorder buffer
“Buffe

r of pOPs waiting for execution




Caches of the Pentium II and Pentium lll Processors

The on-chip cache subsystem of Pentium II and Pentium |l processors
consists of two 16-Kbyte four-way set associative caches with a cache line
length of 32 bytes. The caches employ a write-back mechanism and a
pseudo-LRU (least recently used) replacement algorithm. The data cache

consists of eight banks interleaved on four-byte boundaries.



Level two (L2) caches have been off chip but in the same package. They are
128K or more 1n size. L2 latencies are in the range of 4 to 10 cycles. An L2
miss initiates a transaction across the bus to memory chips. Such an access
requires on the order of at least 11 additional bus cycles, assuming a DRAM
page hit. A DRAM page muss mcurs another three bus cycles. Each bus
cycle equals several processor cycles. for example. one bus cycle for a

100 MHz bus 1s equal to four processor cycles on a 400 MHz processor. The
speed of the bus and sizes of L2 caches are implementation dependent.
however. Check the specifications of a given system to understand the
precise characteristics of the L2 cache.



What is a Core?

A standard processor has one
core (single-core.) Single core
processors only process one
instruction at a time (although they
do use pipelines internally, which
allow several instructions to be
processed together; however, they
are still run one at a time.)



What is a Multi-Core Processor?

A multi-core processor is composed
of two or more independent cores,
each capable of processing individual
Instructions. A dual-core processor
contains two cores, a quad-core
processor contains four cores, and a
hexa-core processor contains six
cores.



Why do | Need Multiple Cores?

Multiple cores can be used to run two programs
side by side and when an intensive program is
running (AV Scan, Video conversion, CD
ripping etc.) you can utilize another core to run
your browser to check your email etc.
Multiple cores really shine when you're using a
program that can utilize more than one core
(called Parallelization) to improve the program’s
efficiency. Programs such as graphic software,
games etc. can run multiple instructions at the
same time and deliver faster, smoother results.
So if you use CPU-intensive software, multiple
cores will likely provide a better experience
when using your PC. If you use your PC to
check emails and watch the occasional video,
you really don’'t need a multi-core processor.



How many cores do i3, i5, and i7’s have?
A Dual-core processor has two cores.
A Quad-core processor has four cores.
An i3 processor has 2 cores.
An 15 processor has 2 or 4 cores

(depending on the model you have.)
An i/ processor has 2, 4 or 6 cores
(depending on the model you have.)



	First Page
	1 - Copy - Copy
	Slide Number 1


	Advance Computer Technologies  2nd Semester (Lecture 6,7,8,9) - Copy
	INTEL’S PENTIUM
	INTEL’S PENTIUM
	Features of the Pentium
	Slide Number 47
	Features of the Pentium
	Features of the Pentium
	Features of the Pentium
	Features of the Pentium
	Slide Number 52
	Features of the Pentium
	Features of the Pentium
	Slide Number 55
	Intel’s overdrive technology
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70




