Fluid mechanic / Second Year

Dr. Abdulkareem A. Wahab

Problems of chapter Four

Problem 4.1 /

The diameter of the pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through the pipe, if the velocity of water flowing through the pipe at section 1 is $5 \mathrm{~m} / \mathrm{s}$. Determine also the velocity at section 2 .

Solution :

$$
\operatorname{Discharge}(Q)=A_{1} V_{1}=\frac{\pi d_{1}^{2}}{4} \times V_{1}=\frac{\pi(0.1)^{2}}{4} \times 5=0.039 \mathrm{~m}^{3} / \mathrm{s}
$$

Discharge (\mathbf{Q}) $=\mathbf{A}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$

$$
\mathrm{V}_{2}=\frac{Q}{A_{2}}=\frac{0.039}{\frac{\pi(0.15)^{2}}{4}}=2.22 \mathrm{~m} / \mathrm{s}
$$

Problem 4.2 I

A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20 cm and 15 cm respectively. If the average velocity in the 30 cm diameter pipe is $2.5 \mathrm{~m} / \mathrm{s}$, find the discharge in this pipe, also determine the velocity in $\mathbf{1 5} \mathbf{~ c m}$ pipe if the average velocity in 20 cm diameter pipe is $\mathbf{2 ~ m / s}$.

Solution :

$$
\text { Discharge }\left(Q_{1}\right) \text { in pipe } 1=A_{1} V_{1}=\frac{\pi(0.3)^{2}}{4} \times 2.5=0.1767 \mathrm{~m}^{3} / \mathrm{s}
$$

$$
\begin{aligned}
& Q_{2}=A_{2} V_{2}=\frac{\pi(0.2)^{2}}{4} \times 2=0.0628 \mathrm{~m}^{3} / \mathrm{s} \\
& Q_{1}=Q_{2}+Q_{3} \\
& Q_{3}=Q_{1}-Q_{2}=0.1767-0.0628=0.1139 \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

$$
\mathbf{Q}_{3}=\mathbf{A}_{\mathbf{3}} \mathbf{V}_{\mathbf{3}}
$$

$$
V_{3}=\frac{Q_{3}}{A_{3}}=\frac{0.1139}{\frac{\pi(0.15)^{2}}{4}}=6.44 \mathrm{~m} / \mathrm{s}
$$

Problem 4.3/

A 25 cm diameter pipe carries oil of sp.gr. 0.9 at a velocity of $\mathbf{3 ~ m} / \mathrm{s}$. At another section the diameter is $\mathbf{2 0} \mathbf{~ c m}$. Find the velocity at this section and also mass rate of flow of oil .

Solution :

$Q=A_{1} V_{1}=A_{2} V_{2}$

$$
\mathrm{V}_{2}=\frac{A_{1} V_{1}}{A_{2}}=\frac{\frac{\pi}{4} \times(0.25)^{2} \times 3}{\frac{\pi}{4}(0.2)^{2}}=4.68 \mathrm{~m} / \mathrm{s}
$$

Mass rate of flow of oil $(\dot{\mathbf{m}})=\rho A_{1} V_{1}=0.9 \times 1000 \times \frac{\pi}{4} \times(0.25)^{2} \times 3$

$$
=132.23 \mathrm{~kg} / \mathrm{s}
$$

Problem 4.4/

A jet of water from a 25 mm diameter nozzle is directed vertically upwards. Assuming that the jet remains circular and neglecting any loss of energy, that will be the diameter at a point 4.5 m above the nozzle, if the velocity with which the jet leaves the nozzle is $\mathbf{1 2} \mathbf{~ m} / \mathrm{s}$.

Solution :

Initial velocity $\left(V_{1}\right)=12 \mathrm{~m} / \mathrm{s}$
Final velocity (\mathbf{V}_{2})
But , ($\Delta \mathrm{V})^{2}=2 \mathrm{gh} \quad$ (opposite free fall equation)
$V_{2}^{2}-V_{1}^{2}=2 \mathrm{gh}$
$V_{2}^{2}-12^{2}=2(-9.81) \times 4.5$

$$
\begin{aligned}
& V_{2}=7.46 \mathrm{~m} / \mathrm{s} \\
& \mathbf{Q}= \mathbf{A}_{1} \mathbf{V}_{1}=\mathbf{A}_{2} \mathrm{~V}_{2} \\
& \mathbf{A}_{2}=\frac{A_{1} V_{1}}{V_{2}}=\frac{\frac{\pi}{4} \times 0.025^{2} \times 12}{7.46}=0.0007896 \mathrm{~m}^{2}
\end{aligned}
$$

$\mathbf{A}_{2}=\frac{\pi D_{2}^{2}}{4} \quad, \quad \mathrm{D}_{2}=\sqrt{\frac{4 A_{2}}{\pi}}=\sqrt{\frac{4 \times 0.0007896}{\pi}}=31.7 \mathrm{~mm}$

Problem 4.5/

Which of the following velocity fields satisfies continuity equation ?
(A) $u=4 x y+y^{2} \quad, v=6 x y+3 x$

To satisfy the continuity equation : $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$
$\frac{\partial u}{\partial x}=4 \mathrm{y} \quad, \frac{\partial v}{\partial y}=6 \mathrm{x}$
$4 y+6 x=0$, Therefore, it does not satisfy continuity equation .
(B) $\mathbf{u}=\mathbf{2} \mathrm{x}^{2}+\mathrm{y}^{2} \quad, \quad \mathbf{v}=-\mathbf{4 x y}$

Solution :

$$
\frac{\partial u}{\partial x}=4 \mathbf{x} \quad, \quad \frac{\partial v}{\partial y}=-4 \mathbf{x}
$$

$4 x+(-4 x)=0$, Therefore, it does satisfy continuity equation.
(C) $u=2 x^{2}-x y+z^{2}, v=x^{2}-4 x y+y^{2}, w=-2 x y-y z+y^{2}$

Solution :

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=4 \mathrm{x}-\mathrm{y} \quad, \frac{\partial v}{\partial y}=-4 \mathrm{x}+2 \mathrm{y} \quad, \frac{\partial w}{\partial z}=-\mathrm{y} \\
& 4 \mathrm{x}-\mathrm{y}+(-4 \mathrm{x}+2 \mathrm{y})+(-\mathbf{y})=0 \\
& 4 \mathrm{x}-\mathbf{y}-4 \mathrm{x}+2 \mathrm{y}-\mathbf{y}=0 \\
& 4 \mathrm{x}-2 \mathrm{y}-4 \mathrm{x}+2 \mathrm{y}=0, \text { Therefore, it does satisfy continuity . } \\
& 0=0
\end{aligned}
$$

