# وزاره التعليم العالي والبحث العلمي 

 كليه المستقبل الجامعه قسم الفيزياء الطبيه مختبر المبكانبك 2 مرحله اولى
## Boyle's Law experiment

اعداد :م.سـاره حامد دانـه

The aim of Experiment: Boyle's Law Investigation and Measure the pressure of the atmosphere.

Apparatus: l-A ruler of metric scale.$(100 \mathrm{~cm})$
2-Glass tube connected with a closed plastic tube at the end .
3-Liquid mercury (Hg).

## $\square$ Theory:

*Boyle's law states that, for constant temperature, the product of the volume and the pressure of an ideal gas is a constant.
*PV=C......... (1)
*The ideal gas law $\mathrm{PV}=\mathrm{nRT}$
*states that this constant (nRT) is proportional to the amount of ideal gas in the sample (the number of moles, n).
*The absolute temperature, T.
*The constant $R$ in this equation is the universal gas constant which has a value of $R=8.31$ $\mathrm{J} /$ (mole.K) in SI unit.
*Note that if T is held constant throughout the experiment, then the ideal gas law reduces to Boyle's law.
*An experiment to investigate Boyle's law is carried out with the apparatus shown in the digram.
*The pressure and volume of the gas (air) trapped in the closed end can be varied by raising or lowering the other end.
*By measuring the difference in levels of mercury in the two tubes the pressure of the gas in the closed end can be calculated.
*The volume of gas in this end can be calculated by assuming that the glass tube is a cylinder.

## Diagram of Experiment:



Table of reading :

| $\mathrm{h}(\mathrm{cm})$ | L cm | $\mathrm{l} / \mathrm{L}\left(\mathrm{cm}^{-1}\right)$ | $\mathrm{P}=\rho \mathrm{gh}$ | $\mathrm{V}\left(\mathrm{cm}^{3}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 12 |  |  |  |
| 5 | 11.5 |  |  |  |
| 10 | 11 |  |  |  |
| 15 | 10.5 |  |  |  |
| 20 | 10 |  |  |  |

Results and your calculation :
$\mathrm{P}=\mathrm{g} \mathrm{gh} \ldots \ldots$. (1)
$\rho=$ density of Mercury $(\mathrm{Hg})=13600 \mathrm{Kg} / \mathrm{m}^{3}$
$1 \mathrm{~mm} . \mathrm{Hg}=132.3 \mathrm{pa}$.
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}^{\wedge} 2 \quad$ or $=10 \mathrm{~m} / \mathrm{sec}^{\wedge} 2$
$\mathrm{v}=4 \pi^{\wedge} 2 \mathrm{~L}$

