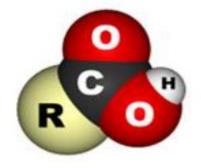
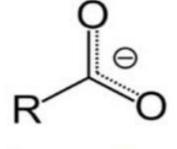

Al-Mustaqbal University College Department of Medical Physics First Class Organic Chemistry Lec 8 Carbooxylic Acid


MSc .Doaa Nassr


MSc .Issa Farahan

Carboxylic acid

A carboxylic acid is an organic compound that contains a carboxyl group (C(=O)OH). The general formula of a carboxylic acid is R-COOH, with R referring to the rest of the molecule. Carboxylic acids occur widely. Important examples include the amino acids and acetic acid. Deprotonation of a carboxyl group gives a carboxylate anion.

Structure of a carboxylic acid

Structure of a Carboxylate Anion

Nomenclature of Carboxylic Acids

The guidelines that must be followed in the IUPAC nomenclature of carboxylic acids are listed below.

- 1-The suffix (e) in the name of the corresponding alkane is replaced with (oic acid).
- 2-When the aliphatic chain contains only one carboxyl group, the carboxylic carbon is always numbered one. For example, CH₃COOH is named as ethanoic acid.
- 3-When the aliphatic chain contains more than one carboxyl group, the total number of carbon atoms is counted and the number of carboxyl groups is represented by Greek numeral prefixes such as (di-, tri-, etc).

4-A carboxylic acid is named by adding these prefixes and suffixes to the parent alkyl chain. Arabic numerals are used for indicating the positions of the carboxyl group.

5-The name "carboxylic acid" assigned for a carboxyl substituent on a carbon chain. An example of such nomenclature is the name 2-carboxyfuran for the compound 2-Furoic acidC₅H₄O₃, 5-Mmethyl-3-heptenoic acid.

Examples

4-Bromo-3-chloropentanoic acid

3-Chloropentanoic acid

Common name	IUPAC name	Chemical formula	General formula
Formic acid	Methanoic acid	нсоон	CH ₂ O ₂
Acetic acid	Ethanoic acid	CH₃COOH	C ₂ H ₄ O ₂
Propionic acid	Propanoic acid	CH₃CH₂COOH	C ₃ H ₆ O ₂
Butyric acid	Butanoic acid	CH ₃ (CH ₂) ₂ COOH	C ₄ H ₈ O ₂
Valeric acid	Pentanoic acid	CH ₃ (CH ₂) ₃ COOH	C ₅ H ₁₀ O ₂
Caproic acid	Hexanoic acid	CH ₃ (CH ₂) ₄ COOH	C ₆ H ₁₂ O ₂
Enanthic acid	Heptanoic acid	CH₃(CH₂)₅COOH	C ₇ H ₁₄ O ₂
Caprylic acid	Octanoic acid	CH ₃ (CH ₂) ₆ COOH	C ₈ H ₁₆ O ₂
Pelargonic acid	Nonanoic acid	CH ₃ (CH ₂) ₇ COOH	C ₉ H ₁₈ O ₂
Capric acid	Decanoic acid	CH ₃ (CH ₂) ₈ COOH	C ₁₀ H ₂₀ O ₂
Undecylic acid	Undecanoic acid	CH ₃ (CH ₂) ₉ COOH	C ₁₁ H ₂₂ O ₂
Lauric acid	Dodecanoic acid	CH ₃ (CH ₂) ₁₀ COOH	C ₁₂ H ₂₄ O ₂
Myristic acid	Tetradecanoic acid	CH ₃ (CH ₂) ₁₂ COOH	C ₁₄ H ₂₈ O ₂
Palmitic acid	Hexadecanoic acid	CH ₃ (CH ₂) ₁₄ COOH	C ₁₆ H ₃₂ O ₂

Physical Properties of Carboxylic Acids

Carboxylic acid molecules are polar due to the presence of two electronegative oxygen atoms.

They also participate in hydrogen bonding due to the presence of the carbonyl group (C=O) and the hydroxyl group

The solubility of compounds containing the carboxyl functional group in water depends on the size of the compound. The smaller the compound (the shorter the R group), the higher the solubility.

The boiling point of a carboxylic acid is generally higher than that of water

Acidity:- Carboxylic acids are typically weak acids, meaning that they only partially dissociate into H3O+ cations and RCOO- anions in neutral aqueous solution