
Assistant Lecturer Miami Abdul Aziz 1

Determine a Memory Location’s Scope and Lifetime

Besides a name, a data type, and an initial value, every variable also has a scope and a

lifetime. The scope indicates where the declared memory location can be used in an

application’s code, and the lifetime indicates how long the variable remains in the

computer’s main memory.

The scope and lifetime are determined by where you declare the memory location in your

code. Memory locations declared in a procedure have procedure scope and are called

procedure-level variables. These variables can be used only within the procedure that

contains their declaration statement, and only after their declaration statement. They are

removed from the computer’s main memory when the procedure ends. In other words, a

procedure level variable has the same lifetime as the procedure that declares it .

Memory locations declared in a form class’s declarations section, but outside of any

procedures, have class scope and are referred to as class-level variables. The form class’s

declarations section is the area between the form’s Public Class and End Class clauses in the

Code Editor window. However, class-level declaration statements typically appear

immediately after the Public Class <formname> clause .

Class-level variables can be used by all of the procedures in the class that contains their

declaration statement. In addition, they have the same lifetime as the application, which

means they retain their values and remain in the computer’s main memory until the

application ends.

Use Procedure-Level Variables

Procedure-level variables are typically declared at the beginning of a procedure, and they

can be used only after their declaration statement within the procedure. They remain in the

computer’s main memory only while the procedure is running, and they are removed from

memory when the procedure ends. As mentioned earlier, most of the variables in your

applications will be procedure-level variables. This is because fewer unintentional errors

AL-Mustaqbal University College / Department of Medical Instrumentation Techniques Engineering

………………………………………………………………………………………………..
Computer applications / Second Class / Second Semester 2021-2022 / Prepared By: Miami Abdul Aziz

 LEC.9

2

Assistant Lecturer Miami Abdul Aziz 2

occur in applications when the variables are declared using the minimum scope needed,

which usually is procedure scope.

The Commission Calculator application illustrates the use of procedure-level variables. As

the interface shown in Figure 2-18 indicates, the application displays the amount of a

salesperson’s commission. The commission is calculated by multiplying the salesperson’s

sales by the appropriate commission rate: either 8% or 10%.

Figure 2-18 User interface for the Commission Calculator application

Figure 2-19 shows the Click event procedures for the 8% rate and 10% rate buttons. When

each procedure ends, its procedure-level variables are removed from the computer’s

memory. The variables will be created again the next time the user clicks the button.

Figure 2-19 Click event procedures using procedure-level variables

Notice that both procedures in Figure 2-19 declare a variable named sales. When you use the

same name to declare a variable in more than one procedure, each procedure creates its own

variable when the procedure is invoked. Each procedure also destroys its own variable when

the procedure ends. So, although both procedures declare a variable named sales, each sales

Assistant Lecturer Miami Abdul Aziz 3

variable will refer to a different section in the computer’s main memory, and each will be

both created and destroyed independently from the other.

Use a Class-Level Variable

Class-level variables are declared immediately after the Public Class clause in the Code

Editor window, and they can be used by any of the procedures entered in the window. Class-

level variables retain their values and remain in the computer’s main memory until the

application ends. Figure 2-20 shows the syntax and examples of declaring a class-level

variable. As the figure indicates, class-level variables are declared using the Private

keyword.

Figure 2-20 Syntax and examples of declaring class-level variables

You can use a class-level variable when two or more procedures in the same form need

access to the same variable. You can also use a class-level variable when a procedure needs

to retain a variable’s value even after the procedure ends. This use of a class-level variable is

illustrated in the Total Scores Accumulator application, which calculates and displays the

total of the scores entered by the user. The application’s interface is shown in Figure 2-21.

Figure 2-21 User interface for the Total Scores Accumulator application

Assistant Lecturer Miami Abdul Aziz 4

Figure 2-22 shows most of the application’s code, which uses a class-level variable named

total to accumulate (add together) the scores entered by the user.

Figure 2-22 The application’s code using a class-level variable

When the user starts the application, the computer processes the Private total As Double

statement first. The statement creates and initializes (to 0) the class-level total variable. The

variable is created and initialized only once, when the application starts. It remains in the

computer’s main memory until the application ends. Each time the user clicks the Add to

total button, the Dim statement on Line 4 in the button1_Click procedure creates and

initializes a procedure-level variable named score. The statement in Line 5 stores the content

of TextBox1.Text property to the score variable. The assignment statement on Line 6 adds

the contents of the procedure-level score variable to the contents of the class-level total

variable. At this point, the total variable contains the sum of all of the scores entered so far.

The assignment statement on Line 7 assigns the total variable’s value to the Label1.Text

property. When the procedure ends, the computer removes the procedure level score variable

from its main memory. However, it does not remove the class-level total variable. The total

variable is removed from the computer’s memory only when the application ends. As

mentioned earlier, a class-level variable can be accessed by any of the procedures entered in

its Code Editor window. As a result, using class-level variables can lead to unexpected

results when one of the procedures makes an inadvertent or incorrect change to the

variable’s value. Tracking down the errors in an application’s code becomes more

complicated as the number of procedures having access to the same variable increases.

Therefore, the use of class-level variables should be minimized. Always keep in mind that

fewer unintentional errors occur when an application’s variables are declared using the

minimum scope needed, which usually is procedure scope. Rather than using a class-level

variable to accumulate values, you can use a static variable.

Assistant Lecturer Miami Abdul Aziz 5

Use a Static Variable

A static variable is a procedure-level variable that remains in memory and also retains its

value even when its declaring procedure ends. Like a class-level variable, a static variable is

not removed from the computer’s main memory until the application ends. However, unlike

a class-level variable, a static variable can be used only by the procedure in which it is

declared. In other words, a static variable has a narrower (or more restrictive) scope than

does a class-level variable. As mentioned earlier, many unintentional errors in your code can

be avoided by simply declaring the variables using the minimum scope needed. Figure 2-23

shows the syntax and examples of declaring static variables. Keep in mind that the Static

keyword can be used only in a procedure.

Figure 2-23 Syntax and examples of declaring static variables

The Total Scores Accumulator application from the previous section used a class-level

variable to accumulate the scores entered by the user. Rather than using a class-level

variable for that purpose, you can also use a static variable, as shown in the code in Figure 2-

24.

Figure 2-24 The application’s code using a static variable

Assistant Lecturer Miami Abdul Aziz 6

The first time the user clicks the Add to total button, the button’s procedure creates and

initializes (to 0) a procedure-level variable named score and a static variable named total.

The assignment statement on Line 5 stores the content of TextBox1.Text property in the

score variable. The assignment statement on Line 6 adds the contents of the score variable to

the contents of the static total variable. The assignment statement on Line 7 assigns the total

variable’s value to the Label1.Text property. When the procedure ends, the computer

removes the variable declared using the Dim keyword(score) from its main memory. But it

does not remove the variable declared using the Static keyword (total). Each subsequent time

the user clicks the Add to total button, the computer recreates and reinitializes the score

variable. However, it does not recreate or reinitialize the static total variable because that

variable, as well as its current value, is still in the computer’s memory. After recreating and

reinitializing the score variable, the computer processes the remaining instructions contained

in the button’s procedure. Here again, each time the procedure ends, the score variable is

removed from the computer’s main memory. The total variable is removed only when the

application ends.

